2019 HSC Mathematics Standard 1 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	C
2	B
3	B
4	C
5	A
6	D
7	A
8	B
9	D
10	B

Section II

Question 11

Criteria	Marks
- Provides correct answer or correct numerical expression	2
- Calculates the amount earned for 4 hours without allowance	1

Sample answer:

Pay for shift $=28 \times 4+8$

$$
\begin{aligned}
& =\$ 112+8 \\
& =\$ 120
\end{aligned}
$$

Question 12

Criteria	Marks
- Provides correct solution	2
- Applies a trigonometric ratio, or equivalent merit	1

Sample answer:

$$
\tan 12^{\circ}=\frac{h}{150}
$$

$$
\begin{aligned}
\therefore h & =150 \times \tan 12^{\circ} \\
& =31.8834 \ldots \\
& =32 \mathrm{~m} \text { (nearest metre) }
\end{aligned}
$$

Question 13

Criteria	Marks
- Provides correct solution	2
- Calculates total amount repaid, or equivalent merit	1

Sample answer:

Total paid $=200 \times 12 \times 3$

$$
=\$ 7200
$$

\therefore Interest $=7200-6000$

$$
=\$ 1200
$$

Question 14

Criteria	Marks
- Provides both correct missing values	2
- Provides correct value for A or uses incorrect answer for A correctly to	
calculate B	

Sample answer:

With GST, chocolates cost $7 \times 1.10=7.70$
$\therefore A=\$ 7.70$
Total $=7.70+5+9+8.50+3.20+2.85$

$$
=\$ 36.25
$$

$\therefore B=\$ 36.25$

Question 15

$\left.\begin{array}{|l|c|}\hline \text { Criteria } & \text { Marks } \\ \hline \text { - Provides correct solution } & 3 \\ \hline \text { - } \begin{array}{l}\text { Provides correct expression for the area of the semi-circle, or equivalent } \\ \text { merit }\end{array} & 2 \\ \hline \text { - Provides correct expression for the area of the square, or correct radius } \\ \text { or equivalent merit }\end{array}\right] 1$

Sample answer:

Area of square $=8 \times 8$

$$
=64 \mathrm{~cm}^{2}
$$

$\begin{aligned} \text { Area of semi-circle } & =\frac{1}{2} \times \pi \times\left(\frac{8}{2}\right)^{2} \\ & =25.1327 \ldots\end{aligned}$

$$
=25.1327 \ldots
$$

\therefore total area $=64+25.1327 \ldots$

$$
=89.1327 \ldots
$$

$$
=89 \mathrm{~cm}^{2} \text { (nearest whole number) }
$$

Question 16

Criteria	Marks
- Provides correct solution	2
- Substitutes one correct value into the simple interest formula	1

Sample answer:

$$
\begin{aligned}
I & =P r n \\
& =800 \times \frac{3}{100} \times \frac{7}{12} \\
& =\$ 14
\end{aligned}
$$

Question 17

Criteria	Marks
- Provides correct solution	2
- Draws a network diagram showing some understanding of the problem	1

Sample answer:

Question 18 (a)

Criteria	Marks
- Provides correct answer or correct numerical expression	1

Sample answer:

$200 \times 2=400 \mathrm{~km}$

Question 18 (b)

Criteria	Marks
- Provides correct answer	1

Sample answer:

Section B
(It is the steepest.)

Question 19

Criteria	Marks
- Provides correct solution with justification	3
- Calculates the interquartile range, or equivalent merit	2
- Finds a quartile, or equivalent merit	1

Sample answer:

$Q_{1}=185$ and $Q_{3}=194$
$I Q R=194-185$

$$
=9
$$

An outlier is less than $Q_{1}-1.5 / Q R$
$=185-1.5 \times 9$
$=171.5$
Since $170<171.5$, the smallest height is considered an outlier.

Question 20 (a)

Criteria	Marks
- Provides correct answer	1

Sample answer:

6

Question 20 (b)

$\left.\begin{array}{|l|c|}\hline \text { Criteria } & \text { Marks } \\ \hline \text { - Provides correct solution } & 2 \\ \hline \text { - Applies one correct scale conversion or attempts to find perimeter without } \\ \text { using the scale, or equivalent merit }\end{array}\right] 1$

Sample answer:

In cm , perimeter $=3.5+3.5+3+3$

$$
=13 \mathrm{~cm}
$$

\therefore perimeter $=13 \times 0.5$

$$
=6.5 \mathrm{~m}
$$

Question 21

Criteria	Marks
- Provides correct solution	2
- Substitutes one correct value into a depreciation formula	1

Sample answer:

$$
\begin{aligned}
S & =V_{0}(1-r)^{n} \\
& =24950(1-0.14)^{10} \\
& =5521.474 \\
& =\$ 5521.47
\end{aligned}
$$

Question 22

Criteria	Marks
\cdot Provides ONE valid reason	1

Sample answer:

Not enough choices.

Question 23 (a)

Criteria	Marks
- Provides all three correct values	1

Sample answer:

Start of year	2018	2019	2020	2021	2022	2023
Number of rabbits	5	10	20	40	80	160

Question 23 (b)

Criteria	Marks
- Writes correct scale and plots all three points	2
- Writes correct scale or plots one correct point	1

Sample answer:

Question 23 (c)

Criteria	Marks
- Provides correct answer with correct reason	1

Sample answer:

Exponential
It is a curve not a straight line.

Question 24

Criteria	Marks
- Provides correct solution	3
- Finds correct relative frequency for rolling a 3, or equivalent merit	2
- Attempts to multiply 20 by a relative frequency, or equivalent merit	1

Sample answer:

$$
100 \%-30 \%-15 \%=55 \%
$$

55% of $20=0.55 \times 20$

$$
=11 \text { times }
$$

Question 25

Criteria	Marks
- Provides correct solution	3
- Correctly calculates the arc length	2
- Substitutes a correct angle or radius into the arc length formula or	
equivalent merit	

Sample answer:

$$
\begin{aligned}
\text { Arc length } & =\frac{120}{360} \times 2 \pi \times 10 \\
& =20.94 \ldots \mathrm{~m} \\
\text { Perimeter } & =20.94 \ldots+10+10 \\
& =40.94 \ldots \\
& =40.9 \mathrm{~m} \quad(1 \text { decimal place })
\end{aligned}
$$

Question 26

Criteria	Marks
- Provides correct solution	4
- Provides an expression for the cost of builder and labourer, or equivalent merit	3
- Provides an expression for the cost of builder and/or labourer working from Monday to Friday, or equivalent merit	2
- Provides an expression for the cost of materials, or equivalent merit	1

Sample answer:

$$
\begin{aligned}
\text { Materials cost } & =5400+1800+160+375 \\
& =\$ 7735
\end{aligned}
$$

Hours worked $M-F=8-1$

$$
\begin{aligned}
& =7 \text { hours } \\
& \therefore 7 \times 5=35 \text { hours }
\end{aligned}
$$

Builder's pay $=(35 \times 70)+(4 \times 1.5 \times 70)$
= \$2870

Labourer's pay $=(35 \times 30)+(4 \times 1.5 \times 30)$

$$
=\$ 1230
$$

\therefore Total cost $=7735+2870+1230$
= \$11835

Question 27 (a)

Criteria	Marks
- Draws line of best fit	1

Sample answer:

Question 27 (b)

Criteria	Marks
- Provides correct answer based on their line of best fit	1

Sample answer:

From the graph, the height is 151 cm

Question 28 (a)

Criteria	Marks
- Provides a correct minimum spanning tree and correct minimum length	2
- Calculates the minimum length from an incorrect network diagram,	1

Sample answer:

[Other minimum spanning trees are possible]
The minimum length of water pipes needed is 25 kilometres.

Question 28 (b)

Criteria	Marks
- Provides correct answer	1

Sample answer:

Path goes from C to G to H to E.

Question 29

Criteria	Marks
- Provides correct solution	2
- Attempts to use the correct ratio, or equivalent merit	1

Sample answer:

Ratio 1:3:6
$1+3+6=10$ shares
$3.5 \div 10=0.35 \mathrm{~m}^{3}$ per share
\therefore Amount of sand $=0.35 \times 3$

$$
=1.05 \mathrm{~m}^{3}
$$

Question 30 (a)

Criteria	Marks
- Provides correct answer	1

Sample answer:

20 bird houses

Question 30 (b)

Criteria	Marks
- Provides correct answer	2
- Provides correct cost or revenue or equivalent merit	1

Sample answer:

A profit will be made
$R=1600$ and $C=1100$
Profit $=1600-1100$

$$
=\$ 500
$$

Question 31

Criteria	Marks
- Provides correct solution	3
- Uses a trigonometric ratio with the correct value of $A C$, or equivalent merit	2
- Calculates $A C$, or equivalent merit	1

Sample answer:

$$
\begin{aligned}
A C^{2} & =2.5^{2}+6^{2} \\
& =42.25
\end{aligned}
$$

$\therefore A C=6.5$
$\cos \theta=\frac{4.9}{6.5}$
$\therefore \theta=41.075 \ldots{ }^{\circ}$

$$
=41^{\circ} 5^{\prime} \text { (nearest minute) }
$$

Question 32

Criteria	Marks
- Provides correct solution	3
- Correctly uses compound interest, or equivalent merit	2
- Calculates the correct number of days, or equivalent merit	1

Sample answer:

Closing balance $=3700 \times\left(1+\frac{0.1825}{365}\right)^{11}$
= \$3720.40

Minimum payment due $=0.02 \times 3720.40$

$$
=\$ 74.41
$$

Question 33 (a)

Criteria	Marks
- Provides correct answer	1

Sample answer:

$p=\frac{4}{7} d$

Question 33 (b)

Criteria	Marks
- Provides correct answer or correct numerical expression	2
- Provides one correct currency conversion	1

Sample answer:

$$
\begin{aligned}
93100 \text { Japanese yen } & =\frac{93100}{76} \\
& =1225 \text { Australian dollars } \\
p & =\frac{1225 \times 4}{7}=700
\end{aligned}
$$

$\therefore 93100$ Japanese yen $=700$ British pounds

Question 34

$\left.\begin{array}{|l|c|}\hline \text { Criteria } & \text { Marks } \\ \hline \text { - Provides correct solution } & 3 \\ \hline \text { - Provides correct substitution and makes one correct algebraic step, or } \\ \hline \text { equivalent merit }\end{array}\right] 2$

Sample answer:

$120=\frac{500(y+1)}{24}$
$2880=500(y+1)$
$5.76=y+1$
$\therefore \quad y=4.76$

Question 35 (a)

Criteria	Marks
- Provides correct answer or correct numerical expression	1

Sample answer:

$22800-22472=\$ 328$

Question 35 (b)

$\left.\begin{array}{|l|c|}\hline \text { Criteria } & \text { Marks } \\ \hline \text { - Provides correct future values for both accounts } & 3 \\ \hline \text { - Provides one correct amount after 8 years and makes progress towards } \\ \text { the other correct amount after 8 years, or equivalent merit }\end{array}\right] 2$

Sample answer:

Account $X: I=$ Prn

$$
\begin{aligned}
& =20000 \times \frac{7}{100} \times 8 \\
& =11200 \\
\therefore \text { Total } & =20000+11200 \\
& =\$ 31200
\end{aligned}
$$

Account $Y: A=P(1+r)^{n}$

$$
\begin{aligned}
& =20000\left(1+\frac{6}{100}\right)^{8} \\
& =\$ 31876.96
\end{aligned}
$$

\therefore Account Y has more money ($31876.96>31200$)

Question 36

\(\left.\begin{array}{|l|c|}\hline Criteria \& Marks

\hline - Provides correct solution \& 4

\hline - Calculates the area of the path and the area of the triangle in the same \& 3

\hline - Canits, or equivalent merit\end{array}\right]\)| - Calculates area of the path, or eqrect relevant area, or equivalent merit |
| :---: |

Sample answer:

$$
\begin{aligned}
\text { Area of garden } & =8.4 \times 5.4 \\
& =45.36 \mathrm{~m}^{2}
\end{aligned}
$$

Length of large rectangle $=8.4+1.8+1.8$

$$
=12 \mathrm{~m}
$$

Width of large rectangle $=5.4+1.8+1.8$

$$
=9 \mathrm{~m}
$$

\therefore Area of path and garden $=12 \times 9$

$$
=108 \mathrm{~m}^{2}
$$

\therefore Area of path $=108-45.36$

$$
=62.64 \mathrm{~m}^{2}
$$

Area of paver $=\frac{1}{2} \times 0.2 \times 0.15$

$$
=0.015 \mathrm{~m}^{2}
$$

\therefore Number of pavers $=62.64 \div 0.015$

$$
=4176
$$

2019 HSC Mathematics Standard 1 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	MS-N1 Networks and Paths	MS1-12-8
2	1	MS-M2 Working with Time	MS1-12-3
3	1	MS-M4 Rates	MS1-12-3
4	1	MS-M3 Right-angled Triangles	MS1-12-3
5	1	MS-M4 Rates	MS1-12-3
6	1	MS-M4 Rates	MS1-12-3
7	1	MS-S1 Data Analysis	MS1-12-2
8	1	MS-M4 Rates	MS1-12-3
9	1	MS-A3 Types of Relationships	MS1-12-6
10	1	MS-M5 Scale Drawings	MS1-12-4

Section II

Question	Marks	Content	Syllabus outcomes
11	2	MS-F1 Money Matters	MS1-12-5
12	2	MS-M3 Right-angled Triangles	MS1-12-4
13	2	MS-F3 Depreciation and Loans	MS1-12-5
14	2	MS-F1 Money Matters	MS1-12-5
15	3	MS-M1 Applications of Measurement	MS1-12-4
16	2	MS-F1 Money Matters	MS1-12-5
17	2	MS-N1 Networks and Paths	MS1-12-8
18 (a)	1	MS-M4 Rates	MS1-12-1
18 (b)	1	MS-M4 Rates	MS1-12-10
19	3	MS-S1 Data Analysis	MS1-12-2
20 (a)	1	MS-M5 Scale Drawings	MS1-12-4
20 (b)	2	MS-M5 Scale Drawings	MS1-12-4
21	2	MS-F3 Depreciation and Loans	MS1-12-5
22	1	MS-S3 Further Statistical Analysis	MS1-12-7
23 (a)	1	MS-A3 Types of Relationships	MS1-12-6

Question	Marks	Content	Syllabus outcomes
23 (b)	2	MS-A3 Types of Relationships	MS1-12-6
23 (c)	1	MS-A3 Types of Relationships	MS1-12-10
24	3	MS-S2 Relative Frequency and Probability	MS1-12-7
25	3	MS-M1 Applications of measurement	MS1-12-4
26	4	MS-F1 Money Matters	MS1-12-5
27 (a)	1	MS-S3 Further Statistical Analysis	MS1-12-2
27 (b)	1	MS-S3 Further Statistical Analysis	MS1-12-2
28 (a)	2	MS-N1 Networks and Paths	MS1-12-8
28 (b)	1	MS-N1 Networks and Paths	MS1-12-8
29	2	MS-M5 Scale Drawings	MS1-12-3
30 (a)	1	MS-A3 Types of Relationships	MS1-12-1
30 (b)	2	MS-A3 Types of Relationships	MS1-12-1
31	3	MS-M3 Right-angled Triangles	MS1-12-4
32	3	MS-F3 Depreciation and Loans	MS1-12-5
33 (a)	1	MS-A2 Linear Relationships	MS1-12-6
33 (b)	2	MS-A2 Linear Relationships	MS1-12-6
34	3	MS-A1 Formulae and Equations	MS1-12-1
35 (a)	1	MS-F2 Investment	MS1-12-5
35 (b)	3	MS-F2 Investment	MS1-12-5
36	4	MS-M1 Applications of Measurement	MS1-12-4

