

2019 HSC Mathematics Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	В
2	D
3	В
4	С
5	A
6	С
7	D
8	С
9	A
10	С

Section II

Question 11 (a)

Criteria		Marks
•	Provides correct solution	2
•	Correctly substitutes the given values into the sine rule, or equivalent merit	1

Sample answer:

х	8
sin40°	sin110°
<i>x</i> =	$=\frac{8\sin 40^{\circ}}{\sin 110^{\circ}}$
	511110^{-1}
=	= 3.47
=	= 5.5

Question 11 (b)

С	Criteria	
•	Provides correct solution	2
•	Attempts to use the product rule, or equivalent merit	1

Sample answer:

$$\frac{d}{dx}(x^2\sin x) = x^2\cos x + 2x\sin x$$

Question 11 (c)

Criteria		Marks
•	Provides correct solution	2
•	Attempts to use the quotient rule, or equivalent merit	1

$$\frac{d}{dx}\left(\frac{2x+1}{x+5}\right) = \frac{(x+5)2 - (2x+1)}{(x+5)^2}$$

Question 11 (d)

Criteria		Marks
•	Provides correct solution	2
•	Identifies the common ratio, or equivalent merit	1

Sample answer:

 $2000 - 1200 + 720 - 432 \dots$

$$a = 2000 r = \frac{-1200}{2000} = -0.6$$
$$S_{\infty} = \frac{a}{1-r} = \frac{2000}{1-(-0.6)} = 1250$$

Question 11 (e)

Criteria		Marks
•	Provides correct solution	3
•	Obtains correct primitive, or equivalent merit	2
•	Obtains a primitive of the form $A(3x+2)^{-n}$, or equivalent merit	1

$$\int_{0}^{1} (3x+2)^{-2} dx$$
$$= \left[\frac{(3x+2)^{-1}}{-3} \right]_{0}^{1}$$
$$= \frac{-1}{3} \left[\frac{1}{3x+2} \right]_{0}^{1}$$
$$= \frac{-1}{3} \left(\frac{1}{5} - \frac{1}{2} \right)$$
$$= \frac{-1}{3} \left(\frac{-3}{10} \right)$$
$$= \frac{1}{10}$$

Question 11 (f)

Criteria		Marks
•	Provides correct solution	2
•	Correctly provides one relevant probability, or equivalent merit	1

Sample answer:

$$P(gg) \text{ or } P(pp) = \frac{5}{12} \times \frac{4}{11} + \frac{7}{12} \times \frac{6}{11} = \frac{20 + 42}{132} = \frac{31}{66}$$

Question 11 (g)

Criteria		Marks
•	Provides correct solution	2
•	Correctly indicates one region, or equivalent merit	1

Question 12 (a) (i)

Criteria		Marks
•	Provides correct solution	2
•	Obtains the slope of the line AB , or equivalent merit	1

Sample answer:

$$2y = x + 4$$
$$y = \frac{1}{2}x + 2$$
Slope of line *AC* is $\frac{-1}{\frac{1}{2}} = -2$
$$y = -2x + K$$

Passes through A(8, 6)

$$6 = -2 \times 8 + K$$

$$K = 22$$

$$y = -2x + 22$$

(or $2x + y - 22 = 0$)

Question 12 (a) (ii)

С	Criteria	
•	Provides correct solution	2
•	Finds the coordinates of B or C or the length of one side, or equivalent merit	1

Sample answer:

Height of $\triangle ABC$ is 6.

Base is distance between *B* and *C*.

B:
$$x - int$$
 $y = 0$
 $x - 2 \times 0 + 4 = 0$
 $x = -4$
 $B(-4, 0)$
C: $x - int$ $y = 0$
 $2x + 0 - 22 = 0$
 $x = 11$
 $C(11, 0)$
BC length is 15

Area
$$\triangle ABC = \frac{1}{2} \times 15 \times 6$$

= 45

Question 12 (b)

Criteria	
Provides correct solution	3
• Obtains two equations involving <i>a</i> and <i>d</i> , or equivalent merit	2
• Obtains one equation involving <i>a</i> and <i>d</i> , or equivalent merit	1

Sample answer:

$$T_{n} = a + (n - 1)d$$

$$6 = T_{4} = a + 3d \quad \boxed{1}$$

$$S_{n} = \frac{n}{2}(2a + (n - 1)d)$$

$$120 = S_{16} = \frac{16}{2}(2a + 15d)$$

$$15 = 2a + 15d \qquad \boxed{2}$$

$$6 = a + 3d \qquad \boxed{1}$$

$$12 = 2a + 6d \qquad 2 \times \boxed{1}$$

$$\boxed{2} - 2 \times \boxed{1} \qquad 3 = 9d$$

$$d = \frac{1}{3}$$

Question 12 (c) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

 $L(31) = 200\,000e^{-0.14 \times 31}$

= 2607.3...

= 2607 (nearest leaf)

Question 12 (c) (ii)

Criteria		Marks
•	Provides correct solution	2
•	Correctly differentiates $L(t)$, or equivalent merit	1

Sample answer:

 $L'(t) = -0.14 \times 200\,000 e^{-0.14t}$

$$L'(31) = -0.14 \times 200\,000e^{-0.14 \times 31} (= -0.14L(31))$$

=-365.02...

Question 12 (c) (iii)

Criteria		Marks
•	Provides correct solution	2
•	Obtains an exponential equation for <i>t</i> , or equivalent merit	1

Sample answer:

Want *t* so that L(t) = 100

 $100 = 200\,000e^{-0.14t}$

$$\frac{1}{2000} = e^{-0.14t}$$
$$t = \frac{-1}{0.14} \ln\left(\frac{1}{2000}\right)$$
$$= 54.29...$$

100 leaves left when t = 54.29...

Question 12 (d)

Criteria		Marks
•	Provides correct solution	3
•	Obtains correct primitive, or equivalent merit	2
•	Obtains correct definite integral, or equivalent merit	1

Sample answer:

As function is above *x*-axis in given interval we have

Area =
$$\int_{0}^{3} \frac{3x}{x^{2}+1} dx$$
$$= \frac{3}{2} \int_{0}^{3} \frac{2x}{x^{2}+1} dx$$
$$= \frac{3}{2} \Big[\ln (x^{2}+1) \Big]_{0}^{3}$$
$$= \frac{3}{2} (\ln (10) - \ln (1))$$
$$= \frac{3}{2} \ln (10)$$

Question 13 (a)

Criteria		Marks
•	Provides correct solution	3
•	Correctly solves one case, or equivalent merit	2
•	Identifies both cases to be considered or finds one correct answer, or equivalent merit	1

0

$2\cos x - 1 =$
$2\cos x = 1$
$\cos x = \frac{1}{2}$
$x = \frac{\pi}{3}, \frac{5\pi}{3}$

Question 13 (b)

Criteria		Marks
•	Provides correct solution	3
•	Obtains the length of the chord AB , or equivalent merit	2
•	Converts the angle at centre to radians or attempts to use the cosine rule, or equivalent merit	1

Sample answer:

 $AB^{2} = 20^{2} + 20^{2} - 2 \times 20 \times 20 \cos 70$ = 526.3838... AB = 22.94 $AB_{Arc} = 20 \times \frac{70\pi}{180}$ = 24.43 P = 22.94 + 24.43= 47.37 = 47.4 cm

Question 13 (c) (i)

Criteria	Marks
Provides correct solution	2
Attempts to use the chain rule, or equivalent merit	1

$$\frac{d}{dx}(\ln x)^2 = 2\ln x \times \frac{1}{x}$$
$$= \frac{2}{x}\ln x$$

Question 13 (c) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$\int \frac{\ln x}{x} dx$$
$$= \frac{1}{2} \int \frac{2}{x} \ln x \, dx$$
$$= \frac{1}{2} (\ln x)^2 + C$$

Question 13 (d)

Criteria		Marks
•	Provides correct solution	3
•	Obtains correct primitive, or equivalent merit	2
•	Obtains correct integral, or equivalent merit	1

$$V = \pi \int_{0}^{1} (x - x^{3})^{2} dx$$
$$= \pi \int_{0}^{1} x^{2} - 2x^{4} + x^{6} dx$$
$$= \pi \left[\frac{x^{3}}{3} - \frac{2x^{5}}{5} + \frac{x^{7}}{7} \right]_{0}^{1}$$
$$= \pi \left(\frac{1}{3} - \frac{2}{5} + \frac{1}{7} \right)$$
$$= \frac{8\pi}{105}$$

Question 13 (e) (i)

Criteria	Marks
Provides correct sketch	1

Question 13 (e) (ii)

Criteria		Marks
•	Provides correct solution	2
•	Sketches $y = 2x + 4$ or attempts to solve $2x + 4 = -(x - 1)$, or equivalent merit	1

$$2x + 4 = -(x - x)$$
$$2x + 4 = -x + 1$$
$$3x = -3$$
$$x = -1$$

Question 14 (a)

Criteria		Marks
•	Provides correct solution	2
•	Attempts to integrate, or equivalent merit	1

$$a = e^{2t} - 4 \qquad \qquad t = 0$$
$$v = 0$$

$$v = \int e^{2t} - 4 dt$$
$$v = \frac{e^{2t}}{2} - 4t + c$$
$$0 = \frac{e^{2(0)}}{2} - 4(0) + c$$
$$0 = \frac{1}{2} + c$$
$$c = \frac{-1}{2}$$
$$v = \frac{e^{2t}}{2} - 4t - \frac{1}{2}$$

Question 14 (b) (i)

Criteria		Marks
•	Provides correct solution	2
•	Finds both <i>x</i> -values or determines the nature of one stationary point, or equivalent merit	1

Sample answer:

$$f'(x) = 0$$

$$0 = 3x^{2} + 2x - 1$$

$$0 = (3x - 1)(x + 1)$$

$$x = -1$$

$$x = \frac{1}{3}$$

$$x = \frac{1}{3}$$

Maximum at $x = -1$

$$x = \frac{1}{3}$$

Minimum at $x = \frac{1}{3}$

Question 14 (b) (ii)

Criteria		Marks
•	Provides correct solution	2
•	Finds correct primitive, or equivalent merit	1

Sample answer:

$$f(x) = \frac{3x^3}{3} + \frac{2x^2}{2} - x + c$$

at the point (0, 4)

$$4 = 03 + 02 - 0 + c$$

4 = c
∴ f(x) = x³ + x² - x + 4

Question 14 (b) (iii)

Criteria		Marks
•	Provides correct sketch	2
•	Provides curve with correct shape, or equivalent merit	1

Sample answer:

$$x = -1$$

$$y = 5$$

$$y = \frac{103}{27}$$

$$y = \frac{103}{27}$$

$$(-1, 5) = \frac{1}{4}$$

$$y = \frac{103}{27}$$

$$(-1, 5) = \frac{1}{4}$$

$$(-1, 5) = \frac{1}{4}$$

$$(-1, 5) = \frac{1}{3}$$

$$(-1, 5) = \frac{1}{3}$$

$$(-1, 5) = \frac{1}{2}$$

Question 14 (b) (iv)

Criteria	Marks
Provides correct solution	1

Sample answer:

f''(x) = 6x + 2f''(x) < 06x + 2 < 06x < -2 $x < \frac{-1}{3}$

Question 14 (c)

Criteria		Marks
•	Provides correct solution	3
•	Correctly finds two angles in $ riangle DEX$, or equivalent merit	2
•	Finds vertex angle in a regular hexagon, or equivalent merit	1

Sample answer:

ABCDEF is a regular hexagon of side length 1.

$$S = (6-2) \times 180$$

$$S = 720$$

 $\angle AFE = \frac{720^{\circ}}{6}$

 $\triangle AEF$ is isosceles, sides of a regular hexagon are equal.

$$\angle AEF = \frac{180^{\circ} - 120^{\circ}}{2}$$

= 30°
$$\angle AED = 120^{\circ} - 30^{\circ}$$

= 90°
$$\angle DEX = 90^{\circ} \quad (\text{supplementary } \angle)$$

$$\angle EDX = 60^{\circ} \quad (\text{supplementary } \angle)$$

$$ED = 1 \quad (\text{given})$$

$$\tan 60^{\circ} = \frac{EX}{1} \quad (\triangle DEX \text{ is right angled})$$

$$\therefore EX = \sqrt{3}$$

Question 14 (d)

Criteria		Marks
•	Provides correct solution	3
•	Obtains two equations in a and b , or equivalent merit	2
•	Obtains the slope of the curve where $x = 2$ or shows point of tangency is $(2, -2)$, or equivalent merit	1

$$y = x^{3} + ax^{2} + bx + 4$$

$$y' = 3x^{2} + 2ax + b$$

$$y = x - 4$$

$$\therefore m = 1 \quad \text{at } x = 2$$

$$1 = 3(2)^{2} + 2a(2) + b$$

$$1 = 12 + 4a + b$$

$$-11 = 4a + b$$

$$at x = 2$$

$$y = 2 - 4$$

$$y = -2$$

$$-2 = 2^{3} + a(2)^{2} + b(2) + 4$$

$$-2 = 8 + 4a + 2b + 4$$

$$-14 = 4a + 2b$$

$$\textcircled{O}$$

$$\textcircled{O} - \textcircled{O}: b = -3$$

$$-11 = 4a - 3$$

$$-8 = 4a$$

$$\therefore a = -2$$

Question 15 (a)

Criteria		Marks
•	Provides correct solution	2
•	Obtains the quadratic equation in x, or equivalent merit	1

$$e^{2\ln x} = x + 6 \quad x > 0$$
$$e^{\ln x^2} = x + 6$$
$$x^2 = x + 6$$
$$x^2 - x - 6 = 0$$
$$(x - 3)(x + 2) = 0$$
$$x = 3 \quad (\text{as } x > 0)$$

Question 15 (b)

Criteria		Marks
•	Provides correct solution	3
•	Show one pair of triangles are similar, or equivalent merit	2
•	Attempts to show that one pair of triangles are similar or uses p or q in a Pythagorean identity, or equivalent merit	1

Sample answer:

 $\triangle ADC \parallel \mid \triangle CDB (AA)$

	$\frac{h}{p} = \frac{q}{h}$	(corresponding sides in proportion)
<i>.</i>	$h^2 = pq$	
	$h = \sqrt{pq}$	(h > 0)

Pythag in $\triangle ABC$

$$AB^{2} = AC^{2} + BC^{2}$$
$$(p+q)^{2} = AC^{2} + BC^{2}$$

Pythag in $\triangle ADC$ and $\triangle BDC$

$$(p+q)^{2} = p^{2} + h^{2} + q^{2} + h^{2}$$
$$p^{2} + 2pq + q^{2} = p^{2} + 2h^{2} + q^{2}$$
$$2pq = 2h^{2}$$
$$h^{2} = pq$$
$$h = \sqrt{pq} \quad (h > 0)$$

Question 15 (c) (i)

Criteria		Marks
•	Provides correct solution	3
•	Shows that the length of <i>BR</i> is $\frac{8}{x}$, or equivalent merit	2
•	Shows $\angle PBR$ is equal to $\angle APQ$, or equivalent merit	1

Sample answer:

 $BR \parallel PQ$ (alternate angles).

So $\angle RBP = \angle QPA$ (corresponding angles).

 $\angle BRP$ and $\angle PQA$ are both right angles.

So $\triangle BRP$ and $\triangle PQA$ are similar (AA).

$$\frac{BR}{RP} = \frac{PQ}{QA}$$
$$\frac{BR}{8} = \frac{1}{x}$$
$$BR = \frac{8}{x}$$

BR and QA produced will meet at right angles at S.

Question 15 (c) (ii)

Criteria		Marks
•	Provides correct solution	3
•	Verifies that a stationary point occurs at $x = 2$, or equivalent merit	2
•	Differentiates D^2 , or equivalent merit	1

Sample answer:

$$\frac{d(D^2)}{dx} = 2(x+8) + 2\left(\frac{8}{x} + 1\right)\left(\frac{-8}{x^2}\right)$$

at $x = 2$ $\frac{d(D^2)}{dx} = 2 \times 10 + 2 \times 5 \times (-2)$
 $= 20 - 20$
 $= 0$

So has a stationary point at x = 2

at
$$x = 1$$

$$\frac{d(D^2)}{dx} = 2 \times 9 + 2 \times 9 \times (-8)$$
$$= 18 - 144$$
$$< 0$$

at
$$x = 4$$

$$\frac{d(D^2)}{dx} = 2 \times 12 + 2 \times 3\left(\frac{-1}{2}\right)$$
$$= 24 - 3$$
$$> 0$$

Summary

x	1	2	4
$\frac{d(D^2)}{dx}$	/	-	/

So D^2 has a minimum at x = 2.

Question 15 (d) (i)

Criteria		Marks
•	Provides correct solution	2
•	Considers a complementary event, or equivalent merit	1

Sample answer:

P(at least 1) = 1 - P(none)= $1 - (1 - 0.02)^2$ = 0.0396

Question 15 (d) (ii)

С	riteria	Marks
•	Provides correct solution	2
•	Obtains an inequality or equation for the number of people, or equivalent merit	1

Sample answer:

For *n* people

P(at least 1) = 1 - P(none)= 1 - (1 - 0.02)ⁿ = 1 - 0.98ⁿ 1 - 0.98ⁿ \ge 0.4 0.6 \ge 0.98ⁿ ln 0.6 \ge ln(0.98ⁿ) = n ln 0.98

$$n \ge \frac{\ln 0.6}{\ln 0.98} = 25.28...$$

So n = 26 is smallest number.

Question 16 (a) (i)

Criteria		Marks
•	Provides correct solution	2
•	Obtains the expression for A_1 , or equivalent merit	1

Sample answer:

Quarterly rate $= \frac{6}{100} \div 4$ $A_1 = 1\,000\,000(1.015)^4 - 80\,000$ $A_2 = A_1(1.015)^4 - 80000$ $= 1\,000\,000(1.015)^8 - 80\,000(1.015)^4 - 80\,000$ $= 1\,000\,000(1.015)^8 - 80\,000(1+1.015^4)$

Question 16 (a) (ii)

Criteria	Marks
Provides correct solution	3
• Correctly sums the series and equates A_n to zero, or equivalent merit	2
• Obtains an expression for A_n , or equivalent merit	1

Sample answer:

Continuing in this way,

$$A_n = 1\,000\,000(1.015)^{4n} - 80\,000\left(1 + 1.015^4 + 1.015^8 + \dots + 1.015^{4(n-1)}\right)$$

$$= 1\,000\,000(1.015)^{4n} - 80\,000 \times \frac{(1.015)^{4n} - 1}{(1.015^4) - 1}$$

(geometric series with a = 1, $r = 1.015^4$, *n* terms).

Let $K = 1.015^{4n}$

We want to find *n* so that $A_n = 0$.

ie
$$1\,000\,000\,K = \frac{80000(K-1)}{0.06136}$$

 $0.06136 \times 100K = 8K - 8$

$$6.136K = 8K - 8$$

$$\therefore 1.864K = 8$$

$$\therefore (1.015)^{4n} = \frac{8}{1.864} = 4.2918...$$

$$4n\log(1.015) = \log(4.2918...)$$

$$1\log(4.2918)$$

$$n = \frac{1}{4} \frac{\log(4.2918)}{\log(1.015)}$$

\$\approx 24.46

 \therefore Money can be withdrawn for 24 years.

Question 16 (b)

Criteria		Marks
•	Provides correct solution	3
•	Uses $t = 0$, $\frac{\pi}{4}$ and $\frac{\pi}{2}$ in Simpson's rule, or equivalent merit	2
•	Finds the time at which the particle first comes to rest, or equivalent merit	1

Sample answer:

Particle first comes to rest when v = 0.

$$\therefore e^{\cos t} = 1 \qquad \therefore \cos t = 0$$
$$\therefore t = \frac{\pi}{2}$$

Distance travelled corresponds to area of region under the curve between t = 0 and $t = \frac{\pi}{2}$

distance =
$$\int_{0}^{\frac{\pi}{2}} (e^{\cos t} - 1) dt$$

Using Simpson's Rule:

$$\frac{1}{6} \left(\frac{\pi}{2} - 0\right) \left[\left(e^{\cos 0} - 1\right) + 4 \left(e^{\cos \frac{\pi}{4}} - 1\right) + \left(e^{\cos \frac{\pi}{2}} - 1\right) \right]$$
$$= \frac{\pi}{12} \left[e - 1 + 4e^{\frac{1}{\sqrt{2}}} - 4 + 0\right]$$
$$= \frac{\pi}{12} \left[e + 4e^{\frac{1}{\sqrt{2}}} - 5\right]$$

 \Rightarrow 1.53 (to 2 decimal places)

Question 16 (c) (i)

Criteria		Marks
•	Provides correct solution	2
•	Finds the equation of the tangent at $(1, 1)$ or finds the equation of the line through $(1, 1)$ and $\left(\frac{r-1}{2}, 0\right)$, or equivalent merit	1
	(r)	

Sample answer:

$$y = x^{r}$$
$$\frac{dy}{dx} = rx^{r-1}$$

when x = 1 $\frac{dy}{dx} = r$

Equation of tangent is y - 1 = r(x - 1).

when
$$y = 0$$
 $-1 = r(x-1)$
 $\therefore x - 1 = \frac{-1}{r}$

 $\therefore \qquad x = 1 - \frac{1}{r} = \frac{r - 1}{r}$

Hence, the line meets the *x*-axis at $\left(\frac{r-1}{r}, 0\right)$

Question 16 (c) (ii)

С	riteria	Marks
•	Provides correct solution	2
•	Recognises that the area of R is the difference of two areas, or equivalent merit	1

Area of
$$R = \int_{0}^{1} x^{r} dx$$
 – area of triangle

$$= \left[\frac{x^{r+1}}{r+1} \right]_{0}^{1} - \frac{1}{2} \times \left(1 - \frac{r-1}{r} \right) \times 1$$

$$= \frac{1}{r+1} - \frac{1}{2} \left(\frac{r-(r-1)}{r} \right)$$

$$= \frac{1}{r+1} - \frac{1}{2r}$$

$$= \frac{2r - (r+1)}{2r(r+1)} = \frac{r-1}{2r(r+1)}$$

Question 16 (c) (iii)

Criteria		Marks
•	Provides correct solution	3
•	Finds the value of r at which there is a stationary point, or equivalent merit	2
•	Finds the derivative of the area of R , or equivalent merit	1

Sample answer:

Let
$$A = \frac{r-1}{2r(r+1)}$$

$$\frac{dA}{dr} = \frac{2r(r+1)\cdot 1 - (r-1)(4r+2)}{4r^2(r+1)^2}$$

$$\frac{dA}{dr} = 0 \text{ when } 2r(r+1) - (r-1)(4r+2) = 0$$

$$-2r^2 + 4r + 2 = 0$$

$$r^2 - 2r - 1 = 0$$

$$r = \frac{2 \pm \sqrt{4+4}}{2} = 1 \pm \sqrt{2}$$

Since $r \ge 0$ we have $r = 1 + \sqrt{2}$

When
$$r = 2$$
 $\frac{dA}{dr} = \frac{2}{\text{positive}} > 0$
When $r = 3$ $\frac{dA}{dr} = \frac{-4}{\text{positive}} < 0$

: maximum value of A occurs when $r = 1 + \sqrt{2}$.

2019 HSC Mathematics Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	1.1	P3
2	1	1.4	P3
3	1	1.1	P3
4	1	9.5	P5
5	1	12.3	H3
6	1	3.2	H5
7	1	13.3	H5
8	1	14.3	H5
9	1	13.6	H5
10	1	14.3	H5

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	2	5.5	P3
11 (b)	2	8.8,13.5	H5
11 (c)	2	8.9	P7
11 (d)	2	7.3	H5
11 (e)	3	11.2	H5
11 (f)	2	3.2	H5
11 (g)	2	4.2,4.4	P4
12 (a) (i)	2	6.2	P4
12 (a) (ii)	2	6.8	P4
12 (b)	3	7.1	H5
12 (c) (i)	1	14.2	H3, H4
12 (c) (ii)	2	14.2	H3, H4
12 (c) (iii)	2	14.2	H3, H4, H5
12 (d)	3	11.4,12.5	H8
13 (a)	3	1.4,5.3,13.3	H5
13 (b)	3	5.5,13.1	H5
13 (c) (i)	2	12.4	H5
13 (c) (ii)	1	12.5,11.1	H5
13 (d)	3	11.4	H8
13 (e) (i)	1	1.2,4.2	P4
13 (e) (ii)	2	1.2,1.4,4.2	P4
14 (a)	2	12.5,14.1	H5
14 (b) (i)	2	10.2	H6

Question	Marks	Content	Syllabus outcomes
14 (b) (ii)	2	10.8	Н6
14 (b) (iii)	2	10.5	Н6
14 (b) (iv)	1	10.4	Н6
14 (c)	3	6.8,5.3	H5
14 (d)	3	8.7,10.7	H5
15 (a)	2	12.2,1.4	Н3
15 (b)	3	2.5	H5
15 (c) (i)	3	2.5	H4
15 (c) (ii)	3	10.6	H5
15 (d) (i)	2	3.2,3.3	H5
15 (d) (ii)	2	3.2,3.3,12.2	H3, H5
16 (a) (i)	2	7.5	H5
16 (a) (ii)	3	7.5	H5
16 (b)	3	11.3,14.3	H3, H5, H8
16 (c) (i)	2	10.7	H5
16 (c) (ii)	2	11.4	H5, H8
16 (c) (iii)	3	10.6	H5