

2019 HSC Software Design and Development Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	В
3	С
4	С
5	А
6	А
7	С
8	А
9	С
10	В
11	D
12	D
13	А
14	А
15	С
16	В
17	D
18	В
19	В
20	С

Section II

Question 21

Criteria	Marks
Shows a thorough understanding of relevant interface considerations	3
Shows some understanding of interface considerations	2
Shows a basic understanding of interfaces	1

Sample answer:

A developer will need to consider how screen elements can be designed to fit small screens and still remain accessible and readable, what input methods are available on these devices (pinch, tap, shake) and what output methods are available (vibrate, audio feedback, pop-up messages).

Question 22

Criteria	Marks
Identifies TWO advantages and TWO disadvantages	3
Demonstrates some understanding of the issues	2
Identifies a relevant issue	1

Sample answer:

A large customer base (with a dominant developer) results in potentially more support being available through user groups. Because more clients use the product, most errors have been addressed.

However, less competition leads to less incentive for innovative creative ideas or maintenance of the product. Also, there is less incentive to respond to user requests for support.

Question 23 (a)

Criteria	Marks
Outlines a similarity AND a difference	2
Outlines a similarity OR a difference	1

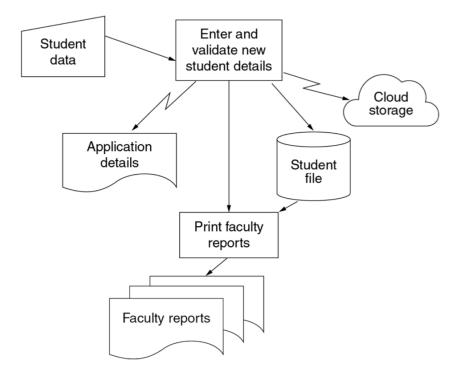
Sample answer:

Both arrays and records enable the grouping and storage of related data. However, all elements in an array must be of the same data type (eg integers or strings) while different fields in a record can be of different data types.

Question 23 (b) (i)

Criteria	Marks
Provides an annotated interface that includes all relevant screen elements with appropriate validation	4
Provides an annotated interface that provides most required elements, including validation	3
Provides an interface that includes several of the required elements	2
Shows some understanding of an interface for this scenario	1

Sample answer:


		r
	New Student Data Please enter the following data:	
	Surname: Given Name:	
Automatically	Student ID: A Gender:	 Drop down (M, F and Other)
updated and displayed	Date of birth: / _ / _ dd mm yyyy Part time:	- Radio buttons
	Email: @	
	Faculty:	
	HELP BACK CLEAR SUBMIT	

Drop down of all 12 faculty names in alphabetical order

Question 23 (b) (ii)

Criteria	Marks
Provides a substantially correct system flowchart using appropriate symbols and labels	3
Provides a system flowchart that shows some understanding of the process	2
Shows some understanding of system flowcharts	1

Sample answer:

Question 23 (b) (iii)

Criteria	Marks
 Provides a relevant explanation of when each search method is appropriate for the student records 	3
 Explains when a linear OR a binary search is appropriate OR Shows some understanding of both linear and binary searches 	2
Shows some understanding of either search method	1

Sample answer:

A binary search requires the data to be sorted while a linear search does not. It can take time to re-sort 20 000 records each time a new search with a different target field is required. Thus it may be faster to perform multiple linear searches.

If there are several searches required, all based on the same target field, it is faster to sort the records on that target field once and then perform multiple binary searches.

A complex search based on multiple criteria (eg gender = "F" and faculty = "maths") needs to be done using a linear search.

Question 24 (a)

Criteria	Marks
Provides a substantially correct desk check	2
Shows some understanding of desk checking	1

Sample answer:

X	Y	Ζ	Output
1	2	2	
2			4
3		2	
4			8
5		2	
6			12
7		2	
8		2	
9			Done

Question 24 (b)

Criteria	Marks
Provides various required changes, with explanation	3
Provides some required changes OR explains one change	2
Identifies a required change	1

Sample answer:

No need to keep setting Z to Y (remove line 4 and change line 2 to Get Z).

We could add 2 to X in one statement, rather than two separate addition operations. Therefore line 6 becomes X = X + 2 (remove line 11 and change line 1 to X = 0).

There is no need to recheck if X < 8 as it is already known to be less than 7 (remove lines 7 and 9).

Question 25 (a)

Criteria	Marks
Provides an approach for this project, with thorough justification	3
Provides an approach for this project, with some relevant justification	2
Identifies a development approach	1

Sample answer:

As the system is constantly evolving, and the future needs may not yet be fully known, an agile approach will allow fast delivery of an initial version, followed by easy implementation of upgraded versions as users' needs become more apparent.

Question 25 (b)

Criteria	Marks
Describes various ways relevant to this application	3
Outlines ways relevant to this application	2
Outlines one way of evaluating	1

Sample answer:

The team can confirm (using a checklist) that the functionality and quality of the current live application meet all of the requirements.

The team can check the performance of the current live system by measuring typical response times, and times to load videos and images.

A quick online survey can be regularly delivered to gain feedback from a range of users, particularly after each upgrade, to identify areas of concern/satisfaction.

Question 25 (c)

Criteria	Marks
 Justifies a variety of ways relevant to the evolving social-networking application 	4
 Justifies ways relevant to the evolving social-networking application OR Justifies a variety of ways 	3
 Justifies ways OR Outlines a variety of ways 	2
Shows some understanding of software maintenance	1

Sample answer:

Each team member should write to defined standards so that the code is uniform (consistent naming and use of language) and therefore easier to maintain.

There are a variety of logical tasks to code (eg logon, load, message, share, interface design), so each should be in one identifiable module. This makes it easier to modify individual modules as new needs are identified.

Similar applications already exist so the code should be written to allow ease of incorporation of required existing modules.

Version control should be set up from the start to handle the incorporation of any changes.

To adapt easily to new devices there should be a separate module dealing with interface design for maximum flexibility.

Question 26

Criteria	Marks
Provides a substantially correct description that includes reference to loops, decisions and parameters	4
Provides a relevant description that refers to the meaning of some of the symbols used	3
Demonstrates some understanding of the structure chart provided	2
Demonstrates a basic understanding of structure charts	1

Sample answer:

The system calls a Login module which calls the EnterMemberDetails&Validate module, which repeatedly executes until the details are valid. It returns MemberID to the Login module and then back to the HotelBookingSystem mainline.

A choice is then continually offered of BrowseHotels or Book until the user chooses to exit. If they choose to book, their MemberID is passed into the Book module where booking details are entered. If a booking is successful, the flag BookingMade is set to true and returned with a generated BookingID to the HotelBookingSystem mainline.

Once the user has exited the Browse/Book modules, details of the newly made booking are passed into the DisplayNewBookings module which will display all bookings just made. This only occurs if the BookingMade flag is true.

Question 27 (a)

Criteria	Marks
Justifies THREE relevant considerations for this system	3
Justifies TWO relevant considerations	2
Shows a basic understanding of the system's requirements	1

Sample answer:

The developer needs to ensure that the interface design caters for the disabled customers in order to prevent unintended discrimination. Relevant functionality and data are important in order to offer tours relevant to disabled customers to cater for their needs. The proposed system must be compatible with their existing hardware and software to minimise costs.

Answers could include:

- · Adequate security to protect sensitive customer data because the system is going online
- Providing alternative date and currency formats because the customer base may be global.

Question 27 (b)

Criteria	Marks
Outlines THREE relevant factors	3
Outlines TWO relevant factors	2
Shows a basic understanding of programming language features	1

Sample answer:

The programming language should be compatible with the existing/proposed architecture and operating system, and able to interface with the unusual hardware devices. It should fit in with the company's existing programming environment.

Answers could include:

- Allow easy access to support when required
- Be one that the developers are experienced in using.

Question 27 (c)

Criteria	Marks
Provides an explanation of ONE advantage AND ONE disadvantage relevant to this upgrade	3
Demonstrates good understanding of EITHER ONE advantage OR ONE disadvantage	2
Demonstrates basic understanding of ONE advantage or ONE disadvantage	1

Sample answer:

A single developer leads to minimised communication issues, saving time and avoiding misinterpretation. The single developer does not need to explain to team members specific requirements for the design and implementation. This is particularly relevant for the range of disabled users.

However, the single developer may not be skilled in all required areas (eg security of member data, designing inclusive interfaces) leading to a poorer quality system.

Answers could include:

Advantage of a single developer Easier management of the process – a single developer manages their own timeline, independent of others. Less stress on the developer.

Disadvantage of a single developer

A single developer may not be able to complete the project within the required time frame required by the travel company.

Question 28

Criteria	Marks
 Provides a substantially correct algorithm that addresses the following features: 	
 Input a string 	
 Determine its length 	
 Calculate number of characters each side of the middle 10 	4
 Use appropriate routines 	
 Use correct parameters 	
 Display encrypted string 	
 Provides a substantially correct algorithm that addresses most of the features 	3
Provides an algorithm that attempts to address some of the features	2
Shows some understanding of the problem	1

Sample answer:

 $\begin{array}{l} \mathsf{BEGIN\ Encrypt} \\ \mathsf{Get\ string} \\ \mathsf{len} = \underline{\mathsf{Length}}(\mathsf{string}) \\ \mathsf{Step1i} = \underline{\mathsf{Middle}}(\mathsf{string}, 10) \\ \mathsf{Step1ii} = \underline{\mathsf{Flip}}(\mathsf{Step1i}) \\ \mathsf{side} = (\mathsf{len-10})/2 \\ \mathsf{Step2a} = \underline{\mathsf{Left}}(\mathsf{string}, \mathsf{side}) \\ \mathsf{Step2bi} = \underline{\mathsf{Flip}}(\mathsf{Step2a}) \\ \mathsf{Step2bii} = \underline{\mathsf{Append}}(\mathsf{Step2bi}, \mathsf{Step1ii}) \\ \mathsf{Step3a} = \underline{\mathsf{Right}}(\mathsf{string}, \mathsf{side}) \\ \mathsf{Step3bi} = \underline{\mathsf{Flip}}(\mathsf{Step3a}) \\ \mathsf{Step3bii} = \underline{\mathsf{Append}}(\mathsf{Step2bii}, \mathsf{Step3bi}) \\ \mathsf{Display\ Step3bii} \end{array}$

END

Question 29 (a)

Criteria	Marks
Describes TWO methods relevant to this subroutine	3
 Describes ONE method relevant to this subroutine OR 	2
Outlines TWO methods	
Shows some understanding of error identification	1

Sample answer:

Insert debugging output statements at appropriate points in the code to display the value of Swapped and the two elements being compared, inside the loop at line 55 and after the comparison at line 115.

Insert a breakpoint at the end of each pass (line 135) so that the contents of the array can be checked at that point.

Question 29 (b)

Criteria	Marks
Justifies relevant changes	2
Shows some understanding of the sort process	1

Sample answer:

Change line 30 to Set Swapped to True to ensure the loop is entered at the start of the sort.

Insert line 45 Set Swapped to False to reset the Swapped flag at the start of each pass.

Remove line 130 to ensure array index doesn't exceed length of array.

Question 30

Criteria	Marks
 Provides a substantially correct algorithm that addresses the following features: 	
 Loop through all the player scores 	_
 Effectively process a new player 	5
 Keep track of the indices for both arrays 	
 Transfer data appropriately 	
 Provides a substantially correct algorithm that addresses most of the features 	4
Provides an algorithm that addresses some of the features	3
Provides an algorithm that addresses one of the features	2
Shows some understanding of the problem	1

Sample answer:

'Note: FRow = current row in First

SRow = current row in Second

Column = position of current score along Second for this current player

BEGIN Transpose

4

InitFirstElement For FRow = 2 to 50 CheckIfNextPlayerSame MoveThisScore NEXT FRow

END Transpose

BEGIN InitFirstElement FRow = 1 SRow = 1 Column = 2 MovePlayerId

End InitFirstElement

```
BEGIN MovePlayerId
Second (SRow, 1) = First (FRow, 1)
<u>MoveThisScore</u>
END MovePlayerId
```

```
BEGIN CheckIfNextPlayerSame

IF First (FRow, 1) = First (FRow – 1, 1) THEN

Column = Column + 1

ELSE

SRow = SRow + 1

Column = 2

<u>MovePlayerId</u>

END IF

END CheckIfNextPlayerSame
```

```
BEGIN <u>MoveThisScore</u>
Second (SRow, Column) = First (FRow, 2)
END <u>MoveThisScore</u>
```

Section III

Question 31 (a)

Criteria	Marks
Demonstrates understanding of relevant OOP concept(s) with respect to maintenance of software	2
Demonstrates some understanding of the OOP paradigm	1

Sample answer:

Due to encapsulation, any objects not affected by changes in requirements do not need to be considered by the programmer. This allows them to focus specifically on the methods or attributes requiring change.

Question 31 (b) (i)

Criteria	Marks
Distinguishes between polymorphism and inheritance in this system, with relevant examples	4
Shows some understanding of polymorphism AND inheritance, with relevant example(s)	3
Shows some understanding of polymorphism AND/OR inheritance	2
Shows some understanding of the code provided	1

Sample answer:

Inheritance allows the definition of a subclass such as the TICKETTYPE that has the same properties as the super class TICKET with additional properties as required, such as discounted tickets.

On the other hand, polymorphism, while still a characteristic of OOP, allows the same method to process data differently, depending on the circumstances. Although we call the method GetDiscount(), the logic will depend on the specific type of discount available for the ticket being purchased.

Answers could include:

GetEvent_name() occurs in both classes but the logic is different.

Question 31 (b) (ii)

Criteria	Marks
Provides correct code	2
Provides some relevant code	1

Sample answer:

212 IF Evidence_sighted is FALSE THEN214 Discount = 0216 END IF

Question 31 (c) (i)

Criteria	Marks
Provides a correct definition and relevant example for each of the three concepts	3
Shows an understanding of most concepts	2
Shows some understanding of one concept	1

Sample answer:

Facts are statements that are assumed to be true, such as "Mary has a temperature".

Rules are used to determine new facts, based on existing facts and user input, such as "IF Mary has a temperature AND Mary has a rash THEN Mary has measles".

A query is used to determine relevant goals using the inference engine, based on user input, for example "What disease does Mary have?"

Question 31 (c) (ii)

Criteria	Marks
 Provides a thorough description of the use of pattern matching in this system 	3
• Demonstrates understanding of the use of pattern matching in this system	2
Demonstrates some understanding of pattern matching	1

Sample answer:

Pattern matching could be used to compare stored images of typical rashes with a photo of a patient's rash. The software recognises commonalities in all previously scanned images of identified rashes. The new unknown rash is scanned to see if the same commonalities exist, and the probability of a match with an identified rash can be determined. This allows probable diagnoses (eg 90% chance of measles) to be made.

Question 31 (d)

Criteria	Marks
Provides a description of the potential use of AI in this context	3
Demonstrates some understanding of AI	2
Demonstrates some understanding of the role of the software	1

Sample answer:

Al can make use of input (from the car's sensors as it moves along the route) and use the logic paradigm based software to compare it to large amounts of previously collected data (where observed good driving practice is expressed as facts and rules), so that the car appears to make appropriate decisions while driving.

Question 31 (e)

Criteria	Marks
Provides a thorough justification for their response (yes or no)	3
Provides justification for their response	
OR	2
Shows understanding of the imperative paradigm	
Shows limited understanding of the imperative paradigm	1

Sample answer:

Yes. Not all systems lend themselves to being encoded using alternative paradigms such as OOP or logic. There may be no need to identify objects and their classes, or it may not be possible to solve the problem by specifying facts and rules. It may be more productive to use the imperative paradigm to code each of the logical steps required, such as an encryption process.

Question 32 (a)

Criteria	Marks
Provides the correct calculation with carry bits shown	2
Shows some understanding of the process	1

Sample answer:

	1^1	0	1^1	1	
	0	1	1	1	
	0	0	1	1	
1	0	1	0	1	

Question 32 (b)

Criteria	Marks
Provides an outline of the processes used in all three operations with reference to flipping, shifting and adding	3
Provides an outline of the processes used in two of the operations	2
Shows limited understanding of one operation	1

Sample answer:

Subtraction can be done by adding the two's complement (obtained by flipping bits and adding 1).

Multiplication is achieved by shifting and adding the bits of the multiplier.

Division is achieved by repetitive shifting of the divisor and subtraction to produce remainders.

Question 32 (c)

Criteria	Marks
Provides a detailed explanation for all three interpretations	4
Provides a detailed explanation for two interpretations	
OR	3
Provides an explanation for three interpretations	
Provides a detailed explanation for one interpretation	
OR	2
Provides an explanation for two interpretations	
Shows some understanding of one interpretation	1

Sample answer:

Each group of 8 bits (1 byte) can represent an ASCII character, with the first byte specifying three characters in the string to follow.

The bytes can represent a single long integer, with the first bit possibly being the sign. The equivalent decimal value is calculated by adding powers of 2.

The bytes can represent a single precision floating point number consisting of a sign bit, exponent and mantissa.

Question 32 (d)

Criteria	Marks
Provides a correct circuit with only one gate and a correct truth table	3
Provides a substantially correct simpler circuit with a relevant truth table	2
Shows some understanding of logic circuits	1

Sample answer:

А	В	V	W	Х	Y	Z
0	0	1	1	1	1	1
0	1	1	0	1	0	0
1	0	0	1	0	1	0
1	1	0	0	1	1	1

А	В	NOT XOR
0	0	1
0	1	0
1	0	0
1	1	1

Question 32 (e) (i)

Criteria	Marks
Provides a correct data stream	2
Provides a partially correct data stream	1

Sample answer:

1 0011 0011 0101 1111 1

Question 32 (e) (ii)

Criteria	Marks
Provides a correct drawing, showing all movements and known walls	3
Provides a partially correct drawing	2
Demonstrates some understanding of the problem	1

Sample answer:

			A	

Question 32 (e) (iii)

Criteria	Marks
Explains the required changes for the drone and both data streams	3
Identifies some relevant changes to the drone and/or data streams	2
Shows some understanding of the requirements	1

Sample answer:

The drone will require two more sensors to detect walls above and below, as well as changes to the motor to allow up and down movement.

The data stream sent from the drone requires two more 4-bit components to transmit the distance to the nearest wall above and below the drone.

The data stream sent from the computer requires the direction component to be increased to 3 bits to allow up and down movement, for example

000 - back 001 - right 010 - left 011 - forward 100 - up 101 - down

2019 HSC Software Design and Development Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes	
1	1	9.1.2 Approaches	H1.2	
2	1	9.2.4 Volume testing	H4.2	
3	1	9.1.2 Outsourcing	H1.2	
4	1	9.2.4 Post-implementation review	H5.2	
5	1	9.1.2 CASE tools	H1.2	
6	1	9.2.2 Data dictionary	H5.2	
7	1	9.2.2 Search/complete the algorithm	H4.2	
8	1	9.2.3 Use of flags	H4.2	
9	1	9.2.3 Compilation/interpretation	H4.2	
10	1	9.2.2 Control structure (convert post-test to pre-test)	H4.2	
11	1	9.1.2 Methods of installation	H1.2	
12	1	9.2.3 Fetch-execute cycle	H1.3	
13	1	9.2.2 Converting documentation	H5.2	
14	1	9.2.4 Test data	H4.2	
15	1	9.2.2 Sequential vs relative files	H1.3	
16	1	9.2.2 Local/global variables	H4.2	
17	1	9.2.3 Syntax (English to EBNF)	H4.2	
18	1	9.2.2 Algorithm, random number generator	H4.2	
19	1	9.2.2 Algorithm for data validation	H4.2	
20	1	9.2.2 Sort	H4.2	

Section II

Question	Marks	Content	Syllabus outcomes
21	3	9.2.2 Developing software for specific devices	H2.2
22	3	9.1.1 Software market – dominant players	H3.1
23 (a)	2	9.2.2 Scenario – student enrolment Compare and contrast arrays and records	H4.2
23 (b) (i)	4	9.2.2 Documentation – screen design	H6.4, H5.2
23 (b) (ii)	3	9.2.1, 9.2.2 Documentation – system flowchart	H5.2
23 (b) (iii)	3	9.2.2 Justification of search methods	H4.2
24 (a)	2	9.2.2 Algorithm – simple desk check	H4.2
24 (b)	3	9.2.2 Improving code efficiency	H4.2
25 (a)	3	9.1.2 Development approach	H1.2
25 (b)	3	9.2.4 Software evaluation	H4.3, H5.1
25 (c)	4	9.2.5 Maintenance	H4.2, H5.1

Question	Marks	Content	Syllabus outcomes
26	4	9.2.1 Documentation – interpreting a structure chart	H5.2
27 (a)	3	9.1.1, 9.2.1 Scenario – travel company Meeting client needs	H4.1
27 (b)	3	9.2.2, 9.2.3 Choosing a programming language	H2.1
27 (c)	3	9.3, 9.1.2 Team of developers vs single developer	H6.3
28	4	9.2.2 Algorithm based on subroutines provided	H4.2
29 (a)	3	9.2.3 Sorting subroutine – debugging methods	H4.2
29 (b)	2	9.2.2 Fixing errors in subroutine	H4.2
30	5	9.2.2 Algorithm – processing 2D array	H4.2

Section III

Question	Marks	Content	Syllabus outcomes	
31 (a)	2	9.4.1 Implication of OOP for testing/maintenance	H1.2, H2.1	
31 (b) (i)	4	9.4.1 Distinguish between inheritance and polymorphism	H1.2, H2.1	
31 (b) (ii)	2	9.4.1 Modify OOP code	H4.2	
31 (c) (i)	3	9.4.1 Distinguish between facts, rules and queries	H4.1	
31 (c) (ii)	3	9.4.1 Use of pattern matching in described system	H4.2	
31 (d)	3	9.4.1 Use of Al	H4.2	
31 (e)	3	9.4.1 Current role of the imperative paradigm	H2.1, H4.1	
32 (a)	2	9.4.2 Binary arithmetic – calculation	H1.1, H1.3	
32 (b)	3	9.4.2 Binary arithmetic – role of shift, add, flip	H1.1, H1.3	
32 (c)	4	9.4.2 Data representation	H1.1, H1.3	
32 (d)	3	9.4.2 Simplifying a provided circuit	H1.1, H1.3	
32 (e) (i)	2	9.4.2 Construct a data stream	H1.1, H1.3	
32 (e) (ii)	3	9.4.2 Interpret data streams	H1.1, H1.3	
32 (e) (iii)	3	9.4.2 Modify a data stream	H1.1, H1.3	