

Software Design
and Development

Stage 6
Syllabus

Amended 2010

Original published version updated:
September 1999 – Board Bulletin/Official Notices Vol 8 No 7 (BOS 54/99)
June 2009 – Assessment and Reporting information updated
September 2010

© 2010 Copyright Board of Studies NSW for and on behalf of the Crown in right of the State of New South Wales.

This document contains Material prepared by the Board of Studies NSW for and on behalf of the State of New South Wales. The
Material is protected by Crown copyright.

All rights reserved. No part of the Material may be reproduced in Australia or in any other country by any process, electronic or
otherwise, in any material form or transmitted to any other person or stored electronically in any form without the prior written
permission of the Board of Studies NSW, except as permitted by the Copyright Act 1968. School students in NSW and teachers in
schools in NSW may copy reasonable portions of the Material for the purposes of bona fide research or study. Teachers in schools in
NSW may make multiple copies, where appropriate, of sections of the HSC papers for classroom use under the provisions of the
school’s Copyright Agency Limited (CAL) licence.

When you access the Material you agree:
• to use the Material for information purposes only
• to reproduce a single copy for personal bona fide study use only and not to reproduce any major extract or the entire Material

without the prior permission of the Board of Studies NSW
• to acknowledge that the Material is provided by the Board of Studies NSW
• not to make any charge for providing the Material or any part of the Material to another person or in any way make commercial

use of the Material without the prior written consent of the Board of Studies NSW and payment of the appropriate copyright fee
• to include this copyright notice in any copy made
• not to modify the Material or any part of the material without the express prior written permission of the Board of Studies NSW.

The Material may contain third party copyright materials such as photos, diagrams, quotations, cartoons and artworks. These
materials are protected by Australian and international copyright laws and may not be reproduced or transmitted in any format
without the copyright owner’s specific permission. Unauthorised reproduction, transmission or commercial use of such copyright
materials may result in prosecution.

The Board of Studies has made all reasonable attempts to locate owners of third party copyright material and invites anyone from
whom permission has not been sought to contact the Copyright Officer, ph (02) 9367 8289, fax (02) 9279 1482.

Published by
Board of Studies NSW
GPO Box 5300
Sydney NSW 2001
Australia

Tel: (02) 9367 8111
Fax: (02) 9367 8484
Internet: www.boardofstudies.nsw.edu.au

2010630

Contents

1 The Higher School Certificate Program of Study ... 5

2 Rationale for Software Design and Development in the Stage 6 Curriculum.......................... 6

3 Continuum of Learning for Software Design and Development Stage 6 Students................. 7

4 Aim.. 8

5 Objectives.. 8

6 Course Structure .. 9

7 Objectives and Outcomes.. 11

7.1 Table of Objectives and Outcomes .. 11

7.2 Key Competencies.. 13

8 Content: Software Design and Development Stage 6 Preliminary Course 14

8.1 Concepts and Issues in the Design and Development of Software 14

8.2 Introduction to Software Development .. 20

8.3 Developing Software Solutions.. 31

9 Content: Software Design and Development Stage 6 HSC Course 33

9.1 Development and Impact of Software Solutions.. 33

9.2 Software Development Cycle... 38

9.3 Developing a Solution Package.. 52

9.4 Options ... 55

10 Course Requirements .. 61

11 Post-school Opportunities ... 62

12 Assessment and Reporting .. 63

Software Design and Development Stage 6 Syllabus

5

1 The Higher School Certificate Program of Study
The purpose of the Higher School Certificate program of study is to:
• provide a curriculum structure which encourages students to complete secondary education;
• foster the intellectual, social and moral development of students, in particular developing their:

– knowledge, skills, understanding and attitudes in the fields of study they choose
– capacity to manage their own learning
– desire to continue learning in formal or informal settings after school
– capacity to work together with others
– respect for the cultural diversity of Australian society;

• provide a flexible structure within which students can prepare for:
– further education and training
– employment
– full and active participation as citizens;

• provide formal assessment and certification of students’ achievements;
• provide a context within which schools also have the opportunity to foster students’ physical

and spiritual development.

Software Design and Development Stage 6 Syllabus

6

2 Rationale for Software Design and Development in the
 Stage 6 Curriculum
For the purposes of the Software Design and Development Stage 6 Syllabus, software design and
development refers to the creativity, knowledge, values and communication skills required to
develop computer programs. The subject provides students with a systematic approach to problem-
solving, an opportunity to be creative, excellent career prospects and interesting content.

While a variety of computer applications are used in this subject, they are not the primary focus.
The focus of this subject is the development of computer-based solutions that require the design of
computer software.

There are many different approaches that can be taken to develop software. An understanding of
these and the situations in which they are applied is essential in software development. So too is an
understanding of how hardware and software are interrelated and need each other to function. In
order to develop solutions that meet the needs of those who will use them, communication, personal
and team skills are required by the developers. Together, these considerations provide the basis for
the course.

The major focus of the course reflects the traditional structural approach to software development
and the top-down development of source code. Although there are other more modern approaches
available, the framework of fundamental concepts taught in this course leads to deeper
understanding by students, enabling greater flexibility in developing software solutions using newly
available technology and languages in the future.

Students interested in the fields of software development and computer science will find this subject
of value. The subject is not only for those who seek further study or careers in this field, but also for
those who wish to understand the underlying principles of software design and development.
Students with software development skills wishing to acquire team and communication skills will
find this subject relevant.

The computing field, particularly in the area of software design and development, offers
opportunities for creativity and problem-solving and a collaborative work environment where
working with people and exploring issues is an integral part of the job. It is critical that students of
both genders have the knowledge, understanding and skills necessary to pursue the many new,
exciting and highly paid employment opportunities that exist in the field.

The study of Software Design and Development promotes intellectual, social and ethical growth. It
provides the flexibility to be able to adapt in a field that is constantly changing, yet vital to the
Australian economy.

On completion, the subject provides students with options in the workforce, TAFE and university
study. Further, the study of this subject enables students to take part in debates on the suitability,
applicability and appropriateness of software solutions to issues in Australian society and the world
at large. To this end, Software Design and Development contributes to the overall purpose of the
Stage 6 curriculum.

Software Design and Development Stage 6 Syllabus

7

3 Continuum of Learning for Software Design and
 Development Stage 6 Students

Pathways for students who undertake Stage 6
Computing Studies subjects

Stages 1–3
Science and Technology

Stage 4
Technology (Mandatory)

Stage 5
Information and

Software
Technology

Stage 6
Software

Design and
Development

Stage 6
Information
Processes

and
Technology

Stage 6
VET:

Information
Technology
Curriculum
Framework

and/or and/or

 Workplace University TAFE Other

E
xperiences in using various softw

are types and learning about applications and
im

plications of com
puter-based technologies across all key learning areas

Software Design and Development Stage 6 Syllabus

8

4 Aim
The Software Design and Development Stage 6 Syllabus is designed to develop in students the
knowledge, understanding, skills and values to solve problems through the creation of software
solutions.

5 Objectives
Students will develop:
1. knowledge and understanding about how software solutions utilise and interact with other

elements of computer systems
2. knowledge and understanding of the historical developments that have led to current practices in

software design and development, and of emerging trends and technologies in this field
3. knowledge and understanding of legal, social and ethical issues and their effect on software

design and development
4. skills in designing and developing software solutions
5. skills in management appropriate to the design and development of software solutions
6. skills in teamwork and communication associated with the design and development of software

solutions.

Software Design and Development Stage 6 Syllabus

9

6 Course Structure
The following table provides an overview of the arrangement and relationship between components of
the Preliminary course and the HSC course for Software Design and Development Stage 6. The
percentage values refer to indicative course time.

Preliminary Course
Core strands (100% total time)

HSC Course
Core strands (80% total time)

Concepts and Issues in the Design and
Development of Software 30%
• Social and ethical issues
• Hardware and software
• Software development approaches

Introduction to Software Development 50%
• Defining and understanding the problem
• Planning and designing software solutions
• Implementing software solutions
• Testing and evaluating software solutions
• Maintaining software solutions

Developing Software Solutions 20%

Development and Impact of Software Solutions
 15%
• Social and ethical issues
• Application of software development approaches

Software Development Cycle 40%
• Defining and understanding the problem
• Planning and designing software solutions
• Implementing software solutions
• Testing and evaluating software solutions
• Maintaining software solutions

Developing a Solution Package 25%

Options 20%
Study one of the following options:
• Programming paradigms

OR
• The interrelationship between software and

hardware

Software Design and Development Stage 6 Syllabus

10

Introduction to Software Development
Defining and
Understanding

Planning and
Designing

Implementing Testing and
Evaluating

Maintaining

Software Development Cycle

Defining and
Understanding

Planning and
Designing

Implementing Testing and
Evaluating

Maintaining

Pr
el

im
in

ar
y

 Social and
 Ethical Issues

 Projects

Concepts and Issues in the Design
and Development of Software

Introduction to Development of Software

Developing Software Solutions

H
SC

 Social and
 Ethical Issues

 Projects

Development and Impact of Software
Solutions

Software Development Cycle

One of the following options:
 Programming paradigms

OR
 The interrelationship between software

and hardware

Developing a Solution Package

Software Design and Development Stage 6 Syllabus

11

7 Objectives and Outcomes

7.1 Table of Objectives and Outcomes

Objectives Preliminary outcomes HSC outcomes

Students will develop:
1. knowledge and

understanding about how
software solutions utilise
and interact with other
elements of computer
systems

A student:
P1.1 describes the functions of

hardware and software

P1.2 describes and uses
appropriate data types

P1.3 describes the interactions
between the elements of a
computer system

A student:
H1.1 explains the interrelationship

between hardware and software

H1.2 differentiates between various
methods used to construct software
solutions

H1.3 describes how the major
components of a computer system
store and manipulate data

2. knowledge and
understanding of the
historical developments that
have led to current practices
in software design and
development, and of
emerging trends and
technologies in this field

P2.1 describes developments in
the levels of programming
languages

P2.2 describes the effects of
program language
developments on current
practices

H2.1 explains the implications of the
development of different languages

H2.2 explains the interrelationship
between emerging technologies
and software development

3. knowledge and
understanding of legal,
social and ethical issues and
their effect on software
design and development

P3.1 identifies the issues relating
to the use of software
solutions

H3.1 identifies and evaluates legal, social
and ethical issues in a number of
contexts

H3.2 constructs software solutions that
address legal, social and ethical
issues

4. skills in designing and
developing software
solutions

P4.1 analyses a given problem in
order to generate a
computer-based solution

P4.2 investigates a structured
approach in the design and
implementation of a
software solution

P4.3 uses a variety of
development approaches to
generate software solutions
and distinguishes between
these approaches

H4.1 identifies needs to which software
solutions are appropriate

H4.2 applies appropriate development
methods to solve software
problems

H4.3 applies a modular approach to
implement well structured software
solutions and evaluates their
effectiveness

Software Design and Development Stage 6 Syllabus

12

Objectives Preliminary outcomes HSC outcomes

5. skills in management
appropriate to the design
and development of
software solutions

P5.1 uses and justifies the need
for appropriate project
management techniques

P5.2 uses and develops
documentation to
communicate software
solutions to others

H5.1 applies project management
techniques to maximise the
productivity of the software
development

H5.2 creates and justifies the need for the
various types of documentation
required for a software solution

H5.3 selects and applies appropriate
software to facilitate the design and
development of software solutions

6. skills in teamwork and
communication associated
with the design and
development of software
solutions

P6.1 describes the skills
involved in software
development

P6.2 communicates with
appropriate personnel
throughout the software
development process

P6.3 designs and constructs
software solutions with
appropriate interfaces

H6.1 assesses the skills required in the
software development cycle

H6.2 communicates the processes
involved in a software solution to
an inexperienced user

H6.3 uses and describes a collaborative

approach during the software
development cycle

H6.4 develops and evaluates effective
user interfaces, in consultation
with appropriate people

Software Design and Development Stage 6 Syllabus

13

7.2 Key Competencies
Software Design and Development provides a context within which to develop general
competencies considered essential for the acquisition of effective, higher-order thinking skills
necessary for further education, work and everyday life.

The key competencies are explicitly addressed in the Software Design and Development syllabus to
enhance student learning. The key competency of collecting, analysing and organising
information is addressed through the planning stage, when students are required to determine what
the problem is and how it may best be solved.

Communicating ideas and information is a skill developed by students so that they can both
understand the nature of the problem to be solved and ensure that the proposed solution meets the
users’ needs.

Planning and organising activities and working with others and in teams are integral to the
development of software and are addressed in Preliminary and HSC courses, mainly through the
development of software solutions using effective project management techniques.

Using mathematical ideas and techniques is addressed as students formulate algorithms,
investigate data structures with consideration to how they are presented internally, and construct
timelines or analyse statistical evidence.

During investigations, students will need to select and use appropriate information technologies,
thereby developing the key competency of using technology.

Finally, the exploration of issues and investigation and solution of problems contributes towards the
students’ development of the key competency solving problems.

Software Design and Development Stage 6 Syllabus

14

8 Content: Software Design and Development Stage 6
 Preliminary Course

8.1 Concepts and Issues in the Design and Development of Software

8.1.1 Social and ethical issues

Students are introduced to the widespread use of software in society and are asked to consider how
the software originated and what issues needed to be considered during its development. One way
in which students can achieve this is to reflect on a range of existing software applications.

This topic identifies social and ethical issues that arise in the development and use of software.
Students should be made aware of these issues early in the course so that they can act in a socially
responsible and ethical way throughout the course. Although these issues are taught specifically as
part of this topic, they should also be reconsidered as each new topic is discussed. Thus, for
example, interface design issues, duplication of code or ideas and language used in documentation
should all be considered again at relevant parts in the course.

Outcomes

A student:
P2.2 describes the effects of program language developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P6.1 describes the skills involved in software development.

Students learn about: Students learn to:

Evolution of software applications
• significant applications and design features such as:

– Command line interface
– GUI interface
– search engines
– VisiCalc
– web browsers
– presentation software
– email
– social networking applications

Intellectual property
• copyright
• types of software licences
• licence terminology
• legal aspects
• use of software covered by a licence agreement

(see Course Specifications document)
• events that have led to the need for software licence

agreements, including:
– ease of reproduction and copy
– collaborative development history
– the current open environment of the internet

• sources of code and license conditions that apply,
such as:
– the internet
– books and magazines

• identify significant milestones in the evolution

of software applications and design features

• analyse the issues relating to intellectual

property

• appropriately acknowledge externally sourced

code

• use software in an ethically and legally correct

manner

Software Design and Development Stage 6 Syllabus

15

Students learn about: Students learn to:

Social context of software design
Ergonomics
• ergonomic issues regarding software design:

– effectiveness of screen design
– ease of use
– appropriate messages to the user
– consistency of the user interface

Inclusivity
• the need for software to not exclude individuals or

groups based on characteristics such as:
– cultural background
– economic background
– gender
– disability

Privacy
• need to protect an individual’s data and identity

Required skills in software design and development,
including:
• communication skills
• ability to work in teams
• creativity
• design skills
• technical skills
• problem-solving skills
• attention to detail

• design and evaluate software interfaces in

terms of inclusivity

• identify ways in which privacy can be

protected

• identify the range of skills required to

complete a minor software project

Software Design and Development Stage 6 Syllabus

16

8.1.2 Hardware and software

Hardware and software are mutually dependent components of a computer system. To fully
appreciate their role in a computer system they should be examined in conjunction with data,
processes and personnel.

This topic provides students with a holistic understanding of a computer system and its role in
software development.

Outcomes

A student:
P1.1 describes the functions of hardware and software
P1.3 describes the interactions between the elements of a computer system
P2.1 describes developments in the levels of programming languages
P2.2 describes the effects of program language developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P6.1 describes the skills involved in software development.

Students learn about: Students learn to:

Elements of a computer system
• hardware
• software
• data
• procedures
• personnel

Hardware
• the function of hardware within a computer

system, namely:
– input
– output
– process
– storage
– control

• how a variety of input devices, output devices,
storage devices and CPU components achieve
their purpose

• the current trends and developments in
computer hardware

Software
• operating systems and utilities (see Course

Specifications document)
• off-the-shelf applications packages and custom-

designed software
• generations of programming languages, namely:

– machine code: 1st generation
– assembly language: 2nd generation
– higher-level languages

(imperative/procedural): 3rd generation
– declarative (non-procedural) languages: 4th

generation
• the need for translation

– compilation

• identify the elements of a computer system and

their role in that system
• describe the significance of and interaction

between the elements comprising computer
systems

• describe how data is captured, stored,

manipulated or displayed on a variety of
hardware devices (see Course Specifications
document)

• competently use computer hardware, selecting
appropriate hardware for specific tasks

• identify the impact of using particular devices
on the development and use of software

• competently use a range of software
• describe the development of the generations of

programming languages

• identify the effect of the generations of
programming languages on software
development practices

• distinguish between methods of translation

Software Design and Development Stage 6 Syllabus

17

Students learn about: Students learn to:

– interpretation
• functions of operating systems

– provide interface to hardware
– provide interface to user
– provide interface to software applications
– control the concurrent running of software

applications
– manage system resources (see Course

Specifications document)

• current trends in the development of software
and operating systems

The relationship between hardware and software
• processing of software instructions by hardware

– the fetch–execute cycle
• the initiation and running of an application by

the operating system
– locate and load application
– hand control to application
– start fetch–execute cycle for the application

• the existence of minimum hardware
requirements to run some software

• identify typical tasks performed by operating

systems

• describe what happens during each of the steps

of the fetch–execute cycle

• identify the role of specific hardware used

during each step of the fetch–execute cycle

Software Design and Development Stage 6 Syllabus

18

8.1.3 Software development approaches

There are a number of different approaches that can be taken when developing software. Five are
prescribed for study in this course. There are many ways in which software is commercially
developed, from an ad-hoc approach to the more formalised structured approach. The approach or
combination of approaches used depends on the nature of the problem to be solved, the resources
available and the experience of those involved. This topic introduces students to some of the
alternative approaches and the relevance of each.

Outcomes

A student:
P2.2 describes the effects of program language developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P4.1 analyses a given problem in order to generate a computer-based solution
P4.2 investigates a structured approach in the design and implementation of a software solution
P4.3 uses a variety of development approaches to generate software solutions and distinguishes

between these approaches
P6.1 describes the skills involved in software development.

Students learn about: Students learn to:

Structured approach
• stages in program development

– defining and understanding the problem
– planning and designing
– implementing
– testing and evaluating
– maintaining

• characteristics of the structured approach, including:
– distinct formal stages
– long time periods
– large-scale projects
– large budgets
– involvement of a development team consisting

of:
- analysts
- designers
- programmers
- clients (users and management)

Agile approach
• speed of getting solution to market
• interactive approach with selective refinement
• working version delivered after each iteration
• responds well to changing specifications
• close collaboration between development team and

client throughout the development process

Prototyping
• modeling of a proposed solution or part of a

solution
• progressive refinement of the model in response to

feedback

• identify each of these stages in practical

programming exercises

• design and develop a limited prototype as a

proposed solution, or part of a solution, to a
problem

Software Design and Development Stage 6 Syllabus

19

Students learn about: Students learn to:

Rapid applications development approach (RAD)
• characteristics of the rapid approach, including:

– lack of formal stages
– use of existing routines
– use of appropriate applications to develop the

RAD solution
- drag and drop programming environments
- common application packages such as

spreadsheets, databases
– communication between developer and client
– short time period
– small-scale projects
– small budgets

End user approach
• characteristics of the end user approach, including:

– end user as the developer and maintainer
– typically uses RAD and/or prototyping
– the developer is the client, therefore there are no

communication issues
– small budget and/or short time period for

development

Selecting an appropriate development approach
• software solutions that have been developed using a

single approach
• software solutions that have been developed using a

combination of approaches

• analyse the effectiveness of the prototyping

approach in developing a software solution

• use an existing software package to develop a

solution using a RAD approach

• discuss the advantages and disadvantages of

end user developed software

• compare and contrast structured and agile

approaches
• recognise reasons for the failure of solutions
• select appropriate software development

approaches for specific purposes
• identify characteristics of projects that lend

themselves to a specific development
approach

• recognise that a single solution may involve a
combination of approaches

• identify characteristics of projects that require
a combination of approaches

Software Design and Development Stage 6 Syllabus

20

8.2 Introduction to Software Development
All software development approaches include the phases of defining and understanding the
problem, planning and designing, implementing, testing, and evaluating and maintaining. There are
variations in the time, sequence and organisation of these phases in each of the approaches
introduced in this course. Students may use more than one approach in this course. The content for
each of the phases is listed below and should be presented to students in a cyclic fashion. Areas for
investigation could include writing structured code, modeling and simulation, scripting hypermedia
tools, and customisation of application packages through modifying or creating scripts.

It is important that these areas of investigation involve the use of data types, control structures and
other content covered in this unit.

8.2.1 Defining and understanding the problem, and planning and designing
software solutions

In planning a solution, students need to understand the problem to be solved and how the solution
will be used. In this topic, students will consider all aspects of the solution before starting its
implementation. The selection of data types and structures used in the solution of a problem can
have a huge impact on the effectiveness of that solution. A variety of data types and structures are
introduced in this topic and appropriate algorithms should be developed and implemented that make
best use of these. As algorithms become more complex, there is a need for a methodical top-down
approach with progressive refinement of detail. It is important that algorithms use the control
structures as specified in Course and Software Specifications document. Problems should be
selected at a level of difficulty commensurate with the ability level of students.

Outcomes

A student:
P1.2 describes and uses appropriate data types
P1.3 describes the interactions between the elements of a computer system
P2.2 describes the effects of program language developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P4.2 investigates a structured approach in the design and implementation of a software solution
P4.3 uses a variety of development approaches to generate software solutions and distinguishes

between these approaches
P5.2 uses and develops documentation to communicate software solutions to others.

Software Design and Development Stage 6 Syllabus

21

Students learn about: Students learn to:

Understanding the problem
• clarification of the specifications
• performance requirements
• identification of inputs and required outputs
• determining the steps that, when carried out, will

solve the problem
• Input Process Output (IPO) diagrams

Abstraction/refinement
• the top-down approach to solution development

– a system comprises all the programs in the
suite

– a program comprises all of the modules
required to perform the required task

– a module is a group of subroutines that
together achieve a subtask

– a subroutine is a set of statements that
performs a single logical task

Data types
• data types used in solutions, including:

– integer
– string
– floating point/real
– boolean

• integer representation in binary, decimal and
hexadecimal

• characters represented as numbers in binary,
decimal and hexadecimal

• limitations of particular data types
• data structures, including:

– one-dimensional array
– record

• use of records in sequential files

• determine the inputs and outputs required for a

particular problem
• produce an IPO diagram from a set of

specifications

• develop a systematic approach to the
development of software solutions

• document a proposed non-complex software
solution
– represent the flow of data through a system

using a context diagram
– represent a system using a data flow

diagram (DFD) to show its components and
the data transferred between them

– represent a system using a structure chart to
show the interrelationship between the
component modules

– represent a system using a systems
flowchart to show its component modules,
files and media

• interpret and use an ASCII table
• identify the maximum decimal value that can

be stored in a given number of bits
• recognise the impact of the use of an

inappropriate data type
• select the most appropriate data type for the

solution to a particular problem and discuss the
merit of the chosen type

• create a data dictionary which defines the data
appropriately

Software Design and Development Stage 6 Syllabus

22

Students learn about: Students learn to:

Structured algorithms
• control structures which form the basic building

blocks of all algorithms:
– sequence
– selection (binary, multiway)
– repetition (pre-test, post-test), including for …

next loops
– use of subroutines

• methods for representing algorithms:
– pseudocode
– flowcharts incorporating standard control

structures
• software structure

– use of a clear uncluttered mainline and
subroutines

– use of a modular approach
– use of stubs to represent incomplete modules

• use of standard algorithms, including:
– load an array and print its contents
– add the contents of an array of numbers

• checking the algorithm for errors
• benefits of using structured algorithms

– ease of development
– ease of understanding
– ease of modification

• identify control structures in an algorithm

• interpret and create algorithms represented in

both pseudocode and flowcharts that use
standard control structures

• detect logic errors in an algorithm by

performing a desk check

• gather solutions from a number of sources and

modify them to form an appropriate solution to
a specified problem

• represent code from different sources as an

algorithm to assist in understanding its purpose
and to assess its relevance in a proposed
solution

• incorporate a stub for modules for which the

detail has not yet been developed

Software Design and Development Stage 6 Syllabus

23

8.2.2 Implementing software solutions

The implementation phase could involve a range of activities from modifying existing code to the
development of new code. In order to implement a solution, students need to understand the syntax
of the chosen language.

Careful consideration needs to be given to the language used to implement solutions. The chosen
language should be one that best reinforces the concepts being taught, not simply one that is
currently fashionable. In some cases, this may be a scripting language for an applications package.
It is recognised that in a school environment, the choice of language may well be limited by the
skills and resources available. It is important, however, that any language used meets the course
requirements as specified in Course and Software Specifications.

Regardless of the language used, students should be familiar with using EBNF or railroad diagrams
that specify the valid syntax of the commands used. For every set of algorithms that is
implemented, appropriate user interfaces will need to be developed along with suitable
documentation. Relevant social and ethical issues should be addressed, particularly with reference
to appropriate interface design and issues related to using third party designs and code.

Outcomes

A student:
P1.2 describes and uses appropriate data types
P1.3 describes the interactions between the elements of a computer system
P3.1 identifies the issues relating to the use of software solutions
P4.2 investigates a structured approach in the design and implementation of a software solution
P4.3 uses a variety of development approaches to generate software solutions and distinguishes

between these approaches
P5.2 uses and develops documentation to communicate software solutions to others
P6.1 describes the skills involved in software development
P6.2 communicates with appropriate personnel throughout the software development process
P6.3 designs and constructs software solutions with appropriate interfaces.

Software Design and Development Stage 6 Syllabus

24

Students learn about: Students learn to:

Coding in an approved programming language
• meta-languages, including:

– EBNF
– railroad diagrams

• language syntax
– specified through meta-languages in manuals

and help documentation
• the syntax used to represent the control structures,

including:
– sequence
– selection (binary, multiway)
– repetition (pre-test, post-test, for…next loops)
– use of subroutines or procedures
– combinations of these

• the syntax used to define and use a range of data
types and data structures, including:
– integer
– string
– floating point/real
– boolean
– one-dimensional array
– records

Developing source code
– converting algorithms into source code using

syntactically correct statements

Error detection and correction techniques
• types of coding errors, including:

– syntax errors
– runtime errors
– logic errors

• stubs
– used to check the flow of execution
– used to replace subroutines/modules during

testing to check if that section of the code is
the cause of an error

• flags
– used to check if a section of code has been

executed
– can be used as part of the logic of a solution or

as an error detection process
• debugging output statements

– additional print statements in the code for use
in the debugging process

– used to identify which sections of the code
have been executed

– used to interrogate variable contents at a
particular point in the execution of a program

• verify the syntax of a command using meta-

language statements

• specify syntax using meta-language statements

• use meta-language statements to develop

syntactically correct code

• generate appropriate source code by:

– using appropriate data types and data
structures in solutions

– using a programming environment to
generate and execute code

– coding an algorithm into the chosen
programming language

• trace the output of a given code fragment and

modify it appropriately
• systematically eliminate syntax errors so that a

program can be executed
• run, correct and extend existing code
• test a program with boundary values to detect

possible runtime errors
• detect and correct logic errors in program code

by using a systematic error detection and
correction process

Software Design and Development Stage 6 Syllabus

25

Students learn about: Students learn to:

Commonly executed sections of code
• reusable code

– standard logic, such as:
- a login process
- data validation
- conversion between date formats

– to replace multiple occurrences of the same
code

• combining code from different sources
– copying and pasting into code
– calling modules or subroutines

• making the same data available to different
modules
– global variables
– parameter passing

• use of functions and procedures

User interface development
• the need for consultation with users and/ or

managers
• use of storyboard

– shows the general design of each interface
– shows navigation between interfaces

• effective user interfaces, including:
– factors affecting readability
– use of white space
– effective prompts
– judicious use of colour and graphics
– grouping of information
– unambiguous and non-threatening error

messages
– legibility of text, including:

- justification
- font type (serif vs sans serif)
- font size
- font style
- text colour

– navigation
– recognition of relevant social and ethical

issues
– consistency
– appropriate language for the intended audience

Documentation
• types of documentation

– documentation for developers
– documentation for users

• internal documentation
– meaningful variable names (intrinsic)
– readability of code

• develop standard modules or subroutines for

reuse

• create solutions to problems using existing code

with minimal change or additions
• develop code that makes use of common

modules or subroutines

• differentiate between the scope of local and

global variables

• develop code that makes appropriate use of

global and local variables

• develop code that calls common modules and

passes parameters appropriately

• incorporate functions into modules or

subroutines

• make use of procedures (see Course

Specifications document)

• develop solutions that include appropriate user

interfaces

• evaluate the effectiveness of interfaces used in

commercially available software

• develop an appropriate storyboard for a

specified problem

• design screens incorporating good design and

ergonomic features

• incorporate current relevant interface elements

into software solutions

• produce documentation for different audiences
• produce source code which is well documented

and therefore easy to read, understand and
maintain

• fully document a solution that has been
developed in the classroom

Software Design and Development Stage 6 Syllabus

26

Students learn about: Students learn to:

- comments
- white space
- indentation

• online help, such as:
– context sensitive help
– help files

• create a data dictionary to define the data
(including variables, arrays and records) used in
a developed solution

• use a range of application packages to develop
the various types of documentation to fully
document a solution

• interpret code and documentation prepared by
others

• assess the effectiveness of online help available
in software packages

Software Design and Development Stage 6 Syllabus

27

8.2.3 Testing and evaluating software solutions

Students should check their code using test data that test their programs thoroughly. Students
should check that their solution meets the required objectives. Specifications for a problem together
with the coded solution to that problem should be given to students and they should be asked to test
the solution to see if it meets the specifications. It is important for students to recognise the
responsibilities of software developers in terms of providing a software solution that is appropriate
to the defined problem and that runs effectively under all possible conditions. Developed software
must be thoroughly tested to ensure that it will not fail unexpectedly or produce irrelevant results
even when exposed to unusual or unexpected conditions.

It should be noted that students are expected to have tested their partially coded solutions at various
stages throughout its development.

Outcomes

A student:
P3.1 identifies the issues relating to the use of software solutions
P4.2 investigates a structured approach in the design and implementation of a software solution
P5.1 uses and justifies the need for appropriate project management techniques
P5.2 uses and develops documentation to communicate software solutions to others
P6.1 describes the skills involved in software development
P6.2 communicates with appropriate personnel throughout the software development process
P6.3 designs and constructs software solutions with appropriate interfaces.

Students learn about: Students learn to:

Testing the solution
• the selection of appropriate test data, including:

– data that test all the pathways through the
algorithm

– data that test boundary conditions ‘at’, ‘above’
and ‘below’ values upon which decisions are
based

– data where the required answer is known
– data which is outside the expected values

• the need for thorough test data
• testing both algorithms and coded solutions with

test data such as:
– desk checking an algorithm
– stepping through a coded solution line by line

• peer checking
• structured walk through

Evaluating the solution
• comparing different solutions to the same problem

– different interpretations of the design
specifications

– the advantages and disadvantages of different
approaches to a solution

• determine the expected result given test data

• compare the actual output from a piece of code

with the expected output from test data to detect
logic errors

• create a set of appropriate test data and use it to
verify the logic in a solution

• perform a desk check by producing a table
showing the changes to the content of variables
as the algorithm or code is stepped through
manually

• critically evaluate their work and that of their

peers
• share good aspects of their solutions and the

solutions of others

Software Design and Development Stage 6 Syllabus

28

Students learn about: Students learn to:

• checking the solution to see if it meets the original
design specifications

• the importance and use of user feedback
• the importance of checking that social and ethical

perspectives have been appropriately addressed

Software Design and Development Stage 6 Syllabus

29

8.2.4 Maintaining software solutions

Modifications to code are often required. These modifications need not be made by the original
developers. In these situations, original documentation is very important in understanding the logic
used in the solution. Students should be given opportunities to modify their code and to gain
experience in modifying the code of others with varying amounts of documentation available.
Students could be asked to modify solutions as a means of assessing their understanding. Students
should be reminded of the ethical issues associated with accessing and modifying the code of
others.

Outcomes

A student:
P1.2 describes and uses appropriate data types
P2.2 describes the effects of program language developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P4.1 analyses a given problem in order to generate a computer-based solution
P4.2 investigates a structured approach in the design and implementation of a software solution
P4.3 uses a variety of development approaches to generate software solutions and distinguishes

between these approaches
P5.1 uses and justifies the need for appropriate project management techniques
P5.2 uses and develops documentation to communicate software solutions to others
P6.1 describes the skills involved in software development
P6.2 communicates with appropriate personnel throughout the software development process
P6.3 designs and constructs software solutions with appropriate interfaces.

Students learn about: Students learn to:

Reasons for maintaining code
• changing user requirements
• upgrading the user interface
• changes in the data to be processed
• introduction of new hardware or software
• changing organisational focus
• changes in government requirements
• poorly implemented code

Features in source code that improve its
maintainability, including:
• use of variables instead of literal constants
• use of meaningful variable names
• explanatory comments in the code
• use of standard control structures with

appropriate indentation
• appropriate use of white space to improve

legibility of the source code
• a clear and uncluttered mainline
• one logical task per subroutine
• meaningful names for subroutines and modules

• identify and describe features in code that allow

it to be easily maintained

• create solutions that are easy to maintain

Software Design and Development Stage 6 Syllabus

30

Students learn about: Students learn to:

Understanding source code
• reading original documentation in order to

understand code
– documentation for the user (including user

manuals)
– documentation for developers

• reading original algorithms to identify:
– inputs
– the type and purpose of variables used
– processes
– outputs

• creating algorithms for source code when they
are not available to aid in understanding
– identify the control structures that have been

used
– understand how variables have been used

Inclusion of code from other sources
• copyright issues
• compatibility of code

• convert a fragment of source code into its
equivalent algorithm

• define the purpose of the code to be maintained

• modify code to meet changed requirements

• provide appropriate acknowledgement of the

code of other programmers that has been
incorporated as part of the maintenance process

• assess the compatibility of code to be included in
the source code of an existing solution

Software Design and Development Stage 6 Syllabus

31

8.3 Developing Software Solutions
A series of programming tasks allow the students to put into practice the concepts covered in the
Preliminary course. They allow students to build solutions from specifications and to apply
appropriate project management techniques.
Working in teams is common in the computing field. In order to be a successful member of a team,
students need to communicate well with others and to act in a social and ethical way.
In this topic, students can work with others to develop software solutions. Students should ensure
that their solutions appropriately address all relevant social and ethical issues.

Outcomes
A student:
P1.2 describes and uses appropriate data types
P1.3 describes the interactions between the elements of a computer system
P3.1 identifies the issues relating to the use of software solutions
P4.1 analyses a given problem in order to generate a computer-based solution
P4.2 investigates a structured approach in the design and implementation of a software solution
P4.3 uses a variety of development approaches to generate software solutions and distinguishes

between these approaches
P5.1 uses and justifies the need for appropriate project management techniques
P5.2 uses and develops documentation to communicate software solutions to others
P6.2 communicates with appropriate personnel throughout the software development process
P6.3 designs and constructs software solutions with appropriate interfaces.

Students learn about: Students learn to:

Project management
• identifying tasks
• identifying required programs, modules and

subroutines
• Gantt charts
• logbooks

– regular record of progress
– record of major milestones and stumbling

blocks
• allocating resources
• regular backup with version numbers
• responding to difficulties

– reference to documentation such as manuals
– discussion with peers and experts
– reporting problems to management

• evaluating the solution
– throughout the process
– on completion

Documenting software solutions
• IPO diagrams
• context diagrams
• data flow diagrams (DFDs)
• storyboards
• structure charts

• use appropriate project management techniques
• create and use Gantt charts and logbooks
• devise, document and implement an appropriate

backup strategy that incorporates relevant version
numbers

• prepare suitable documentation to accompany

software solutions
• use appropriate application packages in creating

documentation to support a software solution

Software Design and Development Stage 6 Syllabus

32

Students learn about: Students learn to:

• system flowcharts
• data dictionaries
• Gantt charts
• logbooks
• algorithms
• user documentation including manuals and

online help

Developing software solutions
• defining and understanding the problem

– preparation of initial documentation
• planning and designing

– identification of a suitable development
approach

– design of appropriate algorithms
– identification and incorporation of

appropriate existing algorithms
– determination of appropriate data structures
– identification of relevant subroutines
– design of test data and expected output
– desk check of algorithms
– identification of existing code that can be

used
• implementing

– coding the solution in an appropriate
language

– testing using test data
– documenting the solution, including:

- algorithms
- test data and expected output
- data dictionary
- user documentation

• testing and evaluating
– testing of the solution using test data
– evaluating the implemented solution

• maintaining
– modifying the solution to meet original or

changed specifications

Social and ethical issues related to software
solutions
• intellectual property
• ergonomics issues
• inclusivity and accessibility
• privacy

• create appropriate systems documentation for a

variety of programming tasks

• apply the steps in the software development cycle

when developing solutions

• produce a working solution from an algorithm

derived from a set of specifications

• effectively test a solution

• update a solution incorporating new requirements

• address relevant social and ethical issues in their

software solutions

Software Design and Development Stage 6 Syllabus

33

9 Content: Software Design and Development Stage 6 HSC
 Course

9.1 Development and Impact of Software Solutions

9.1.1 Social and ethical issues

Students undertaking the HSC course should be aware of the broader social and ethical issues
associated with the development and use of software.

This topic builds on the concepts covered in the Preliminary course and looks specifically at the
rights and responsibilities of developers from a number of perspectives. Both past and current
problems arising from the use of software are investigated to illustrate the effects on society of
these and similar problems.

Outcomes

A student:
H2.2 explains the relationship between emerging technologies and software development
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts.

Software Design and Development Stage 6 Syllabus

34

Students learn about: Students learn to:

The impact of software
• inappropriate data structures, for example the year

2000 problem
• computer malware such as viruses
• reliance on software
• social networking
• cyber safety
• huge amounts of information (which may be

unsupported, unverifiable, misleading or incorrect)
available through the internet

Rights and responsibilities of software developers
• acknowledging the intellectual property of others
• recognition by others of the developer’s

intellectual property
• producing quality software solutions
• appropriately responding to user-identified

problems
• adhering to code of conduct
• neither generating nor transmitting malware
• addressing ergonomic issues in software design
• ensuring software addresses inclusivity issues
• ensuring individuals’ privacy is not compromised

Software piracy and copyright
• concepts associated with piracy and copyright,

including:
– intellectual property
– plagiarism
– copyright laws
– licensing issues
– licence conditions
– shareware
– public domain
– open source
– ownership versus licensing
– collaboratively developed software
– reverse engineering
– decompilation

• current and emerging technologies used to combat
software piracy (see Course Specifications
document)

• recognise the effects of software solutions on

society
• identify the impact of inappropriately

developed software on users
• identify the effect of the inappropriate use of

software on society and individuals

• apply a relevant code of conduct to their own

software development

• interpret licence agreements and develop

personal practices that reflect current laws
• identify the relationship between copyright

laws and software license agreements
• acknowledge all sources in recognition of the

intellectual contribution of authors

• identify a range of techniques designed to

combat software piracy

Software Design and Development Stage 6 Syllabus

35

Students learn about: Students learn to:

Use of networks
• by the developer when developing software

– access to resources
– ease of communication
– productivity

• by the user when using network based software

– response times
– interface design
– privacy and security issues

The software market
• maintaining market position
• the effect of dominant developers of software
• the impact of new developers of software and new

products

Legal implications
• national and international legal action resulting

from software development (see Course
Specifications document)

• evaluate the usefulness of networks in the

development environment

• identify the impact of dominant developers of

software on software development

• discuss the reasons for, and consequences of,

significant legal actions pertaining to the
development of software

Software Design and Development Stage 6 Syllabus

36

9.1.2 Application of software development approaches

Students should be aware of the appropriateness of each of the different software development
approaches for a given situation. In this topic, students complete a case study of a software solution.
In so doing, students will engage in a real-world investigation of a significant software solution.

Outcomes

A student:
H1.2 differentiates between various methods used to construct software solutions
H2.2 explains the interrelationship between emerging technologies and software development
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H4.2 applies appropriate development methods to solve software problems
H5.1 applies project management techniques to maximise the productivity of the software

development
H5.2 creates and justifies the need for the various types of documentation required for a software

solution
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions
H6.1 assesses the skills required in the software development cycle
H6.2 communicates the processes involved in a software solution to an inexperienced user.

Software Design and Development Stage 6 Syllabus

37

Students learn about: Students learn to:

Software development approaches
• approaches used in commercial systems, including:

– Structured approach
– Agile approach
– Prototyping
– RAD
– End user approach
– combinations of any of the above

• use of Computer Aided Software Engineering
(CASE) tools and their application in large systems
development, including:
– software version control
– test data generation
– production of documentation
– production of code

• methods of installation of new or updated systems
– direct cut over
– parallel
– phased
– pilot

• employment trends in software development, for
example:
– outsourcing
– contract programmers

• trends in software development
– changing nature of the environment in which

developers work while creating software
solutions

– changing nature of applications
(see Course Descriptions documents)

• compare and determine the most appropriate

software development approach for a given
scenario

• communicate understanding of a commercial

system studied using a case study approach by:
– identifying the approaches used
– discussing the appropriateness of the

approaches used
– describing how the various personnel

contribute to the overall development
– critically evaluating how social and ethical

issues were addressed
– evaluating how effectively the new system

met the needs of the user

• make informed comment on current trends in

software development

Software Design and Development Stage 6 Syllabus

38

9.2 Software Development Cycle
The formal methods that comprise the structured approach to software development empower
students to undertake complex projects, knowing that the developed system will be robust and
easily maintained.

The stages described in this topic should not be studied in isolation or in a sequential fashion.
Students should be exposed to the content in a cyclic fashion and should recognise each stage
during the development of their project(s). It is important that students are able to apply each of the
stages in their project(s).

Areas for investigation in their project(s) could include writing scripts or code for modelling and
simulation, games, scripted hypermedia products and applications.

9.2.1 Defining and understanding the problem

In order for students to be able to develop software to meet an identified need, they first need to be
able to understand the specifications of a problem so that they can eventually translate these
specifications into code.

As well as having good technical skills, it is necessary for students to have good communication
skills so that the users’ requirements can be fully understood and implemented throughout the
development process. The modelling tools used should conform to those specified in the Software
and Course Specifications document and should provide documentation that can be interpreted by
developers and maintainers. Students should develop and refine skills as an integrated part of
developing their software solutions. It is important at this initial stage of the process that all relevant
social and ethical issues are considered as an integral part of the design and development of the
solution.

Outcomes

A student:
H1.2 differentiates between various methods used to construct software solutions
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions and evaluates

their effectiveness
H5.1 applies project management techniques to maximise the productivity of the software

development
H5.2 creates and justifies the need for the various types of documentation required for a software

solution
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions
H6.1 assesses the skills required in the software development cycle
H6.2 communicates the processes involved in a software solution to an inexperienced user
H6.3 uses and describes a collaborative approach during the software development cycle
H6.4 develops and evaluates effective user interfaces, in consultation with appropriate people.

Software Design and Development Stage 6 Syllabus

39

Students learn about: Students learn to:

Defining the problem
• identifying the problem

– needs of the client
- functionality requirements
- compatibility issues
- performance issues

– boundaries of the problem

Issues relevant to a proposed solution
• determining if an existing solution can be used

– social and ethical considerations
– consideration of existing software products
– customisation of existing software

solutions
– cost effectiveness
– licensing considerations

• selecting an appropriate development approach

if there is no appropriate existing solution

Design specifications
• specifications of the proposed system
• developer’s perspective in consideration of:

– data types
– data structures
– algorithms

• user’s perspective
– interface design
– social and ethical issues
– relevance to the user’s environment and

computer configuration

System documentation
• representing a system using systems modeling

tools, including:
– IPO diagrams
– context diagrams
– data flow diagrams (DFDs)
– storyboards
– structure charts
– system flowcharts
– data dictionaries

• algorithms used to document the logic in
modules and subroutines

• test data and expected output

Communication issues between client and
developer
• the need to consult with the client
• the need to incorporate the client’s

perspective
• the need for the developer to enable and

consider feedback
• the need to involve and empower the client

during the development process

• evaluate the extent to which a proposed system

will meet user needs
• evaluate the effectiveness of using existing

software

• identify the parts of the proposed system that

require software to be designed and developed
• identify a relevant approach for a given problem

• develop and interpret design specifications from a

user’s perspective
• recognise the difference between the user’s and

developer’s perspectives and the communication
issues that may arise

• differentiate between forms of systems

documentation and the purposes for which each is
used

• describe a system by interpreting its diagrammatic
representation

• create a diagrammatic representation for a system
using appropriate modeling tools

• effectively communicate with users regarding a
proposed software solution

Software Design and Development Stage 6 Syllabus

40

Students learn about: Students learn to:

Quality assurance
• the need to explicitly define the criteria on

which the quality of the product will be judged
• putting in place management processes to

ensure that quality criteria will be met
• an ongoing process throughout development to

ensure the quality criteria will be met

• identify a range of criteria on which the quality of

the product will be judged
• identify relevant processes for a given criterion

that will result in a quality product

Software Design and Development Stage 6 Syllabus

41

9.2.2 Planning and designing software solutions

To solve complex problems, students need to develop a strategy. They need to be able to identify
inputs and outputs, to select, describe and use relevant data structures, to explain the procedures
required for the solution and explain how each of these will interact. Well-structured algorithms
should be developed. Desk checking of algorithms and documentation of the proposed solution are
also important.

The development of structured algorithms to document the logical solution of problems is a
fundamental principle of this course. These must be developed independently of any coding
language. Students should appreciate that the real skill is in the development of the algorithm, not
the implementation of the logic in a particular language. Not every algorithm developed in this
section of the course need be implemented.

Problems must be chosen with an appropriate level of difficulty that reflects the ability level of
students. The level of difficulty should be greater than in the Preliminary course. Relevant problems
could include the development of games such as hangman, quizzes, mastermind, draughts and
search-a-word. These problems should include use of data structures such as arrays of records and
multidimensional arrays. Students should experience the storing, retrieving and updating of data in
files.

Outcomes

A student:
H1.1 explains the interrelationship between hardware and software
H1.3 describes how the major components of a computer system store and manipulate data
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions and evaluates

their effectiveness
H5.1 applies project management techniques to maximise the productivity of the software

development
H5.2 creates and justifies the need for the various types of documentation required for a software

solution
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions
H6.2 communicates the processes involved in a software solution to an inexperienced user
H6.3 uses and describes a collaborative approach during the software development cycle
H6.4 develops and evaluates effective user interfaces, in consultation with appropriate people.

Software Design and Development Stage 6 Syllabus

42

Students learn about: Students learn to:

Standard algorithms
• standard logic used in software solutions, namely:

– finding maximum and minimum values in
arrays

– processing strings (extracting, inserting,
deleting)

– generating a set of unique random numbers
– processing of sequential files, including:

- sentinel value
- priming read
- open for input, output or append
- close
- appending records

– processing of relative files, including:
- open for relative access
- defining a key field for a relative file
- retrieving, writing and updating a record in

a relative file
– linear search
– binary search
– bubble sort
– insertion sort
– selection sort

(see Course Specifications document)

Custom-designed logic used in software solutions
• requirements to generate these include:

– identification of inputs, processes and outputs
– representation as an algorithm
– testing of the logic in the algorithm
– identification and definition of required data

structures
– use of data structures, including

multidimensional arrays, arrays of records, files
(sequential and relative)
(see Course Specifications document)

• customised off-the-shelf packages
– identifying an appropriate package
– identifying the changes that need to be made
– identifying how the changes are to be made

Standard modules (library routines) used in
software solutions
• reasons for the development and use of standard

modules
• requirements for generating a module or subroutine

for re-use, including:
– identification of appropriate modules or

subroutine
– appropriate testing using drivers
– thorough documentation of the routine:

- author
- date
- purpose

• recognise the logic in a standard approach,

such as a sort or search
• apply standard approaches as part of the

solution to complex problems
• read, interpret and modify algorithms

developed by others
• document the logic required to solve

problems, including:
– nesting of control structures
– record structure
– the use of files (sequential and relative)
– random number generators
– arrays of records
– multidimensional arrays

• develop a suitable set of test data
• desk check algorithms and source code that

include complex logic
• select an appropriate data structure to solve a

given problem

• develop and appropriately document a

module for use by others
• correctly incorporate a standard module into

a more complex solution, passing parameters
effectively

Software Design and Development Stage 6 Syllabus

43

Students learn about: Students learn to:

- order and nature of parameters to be passed
• issues associated with reusable modules or

subroutines, including:
– identifying appropriate modules or subroutines
– considering local and global variables
– appropriately using parameters (arguments)

Documentation of the overall software solution
• tools for representing a complex software solution,

including:
– algorithms
– refined system modeling tools, including:

- IPO diagrams
- context diagrams
- data flow diagrams (DFDs)
- storyboards
- structure charts
- system flowcharts
- data dictionaries

Interface design in software solutions
• the design of individual screens in consultation

with the client, including:
– consideration of the intended audience
– identification of screen size
– identification of data fields and screen elements

required and their appropriate on-screen
placement

– online help
– consistency in approach
– recognition of relevant social and ethical issues
– current common practice in interface design

(see Course Specifications document)

Factors to be considered when selecting the
programming language to be used
• sequential or event-driven software

– driven by the programmer or user
• features required, and features available in the

language
• commands within the language to interface with the

required hardware
• ability to run under different operating systems

Factors to be considered when selecting the
technology to be used
• performance requirements
• benchmarking

• represent a software solution in

diagrammatic form

• interpret and modify existing system

modeling diagrams

• select and use appropriate software to assist

in the documentation of a software solution

• recognise the relevance of CASE tools in the

planning and design of a software solution

• design and evaluate effective interfaces for

software solutions
• use a RAD environment to produce user

interfaces

• recognise that the choice of programming

language to be used depends on the problem
to be solved

• interpret a benchmark report to select the

most suitable technology for a specified task
• produce a benchmark report for a simple

iterative process running under two different
environments or conditions

Software Design and Development Stage 6 Syllabus

44

9.2.3 Implementation of software solution

In the implementation phase of the software development cycle, previously developed algorithms
are converted to a form that can be processed by a computer. Students will need to learn the syntax
of the language, macro or script being used to successfully implement their solutions. Knowledge of
a metalanguage such as EBNF or railroad diagram(s) is essential in understanding both the syntax
of a language and how a translator can detect syntax errors in source code. The need for a
translation process should be recognized. In the case of code, students should be aware of the
relevance of the different translation methods available. Students will need to recognise the
approach being used (that is, sequential or event-driven) and will need to make appropriate
decisions about the design of interfaces and the documentation produced. Relevant social and
ethical issues should be considered during this implementation process.

Outcomes

A student:
H1.1 explains the interrelationship between hardware and software
H1.2 differentiates between various methods used to construct software solutions
H1.3 describes how the major components of a computer system store and manipulate data
H2.1 explains the implications of the development of different languages
H2.2 explains the interrelationship between emerging technologies and software development
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions and evaluates

their effectiveness
H5.1 applies project management techniques to maximise the productivity of the software

development
H5.2 creates and justifies the need for the various types of documentation required for a software

solution
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions
H6.2 communicates the processes involved in a software solution to an inexperienced user
H6.3 uses and describes a collaborative approach during the software development cycle
H6.4 develops and evaluates effective user interfaces, in consultation with appropriate people.

Software Design and Development Stage 6 Syllabus

45

Students learn about: Students learn to:

Implementation of the design using an appropriate
language
• the different programming languages and the

appropriateness of their use in solving different
types of problems

• construction of syntactically correct code that
implements the logic described in the algorithm

Language syntax required for software solutions
• use of EBNF and railroad diagrams to describe the

syntax of statements in the selected language

The need for translational to machine code from
source code
• translation methods in software solutions including:

– compilation
– interpretation

• advantages and disadvantages of each method

• steps in the translation process

– lexical analysis including token generation
– syntactical analysis including parsing
– code generation

• identify an appropriate language to solve a

particular problem
• recognise the appropriateness of either a

sequential or event-driven approach to solve a
particular problem

• develop syntactically correct code to solve a
problem in a given language

• interpret metalanguage definitions for

commands in a selected language
• produce syntactically correct statements using

the metalanguage definitions
• produce a generic metalanguage definition for

a set of syntactically correct statements that
use the same command

• implement a solution from a complex
algorithm using syntactically correct
statements

• explain the use of tokens and the role of the

parsing process during the translation of
source code to machine code

• recognise that machine code is the only code

able to be executed by a computer
• identify the most appropriate translation

method for a given situation
• use the features of both a compiler and an

interpreter in the implementation of a
software solution

Software Design and Development Stage 6 Syllabus

46

Students learn about: Students learn to:

The role of machine code in the execution of a
program
• machine code and CPU operation

– instruction format
– use of registers and accumulators
– the fetch–execute cycle
– use of a program counter and instruction register

• execution of called routines
• linking, including use of DLLs

Techniques used in developing well-written code
• the use of good programming practice, including:

– a clear and uncluttered mainline
– one logical task per subroutine
– use of stubs
– appropriate use of control structures and data

structures
– writing for subsequent maintenance
– version control
– regular backup
– recognition of relevant social and ethical issues

• the process of detecting and correcting errors,
including:
– types of error

- syntax errors
- logic errors
- runtime errors, including:

- arithmetic overflow
- division by zero
- accessing inappropriate memory

locations
– methods of error detection and correction

- use of flags
- methodical approach to the isolation of

logic errors
- use of debugging output statements
- peer checking
- desk checking
- structured walkthrough
- comparison of actual with expected output

• the use of software debugging tools, including:
– use of breakpoints
– resetting variable contents
– program traces
– single line stepping

Documentation of a software solution
• forms of documentation, including:

– log book
– user documentation, including:

- user manual
- reference manual
- installation guide
- tutorial
- online help

• recognise, interpret and write machine code

instructions for a problem fragment

• employ good programming practice when

developing code

• justify the use of a clear modular structure

with separate routines to ease the design and
debugging process

• differentiate between types of errors
• recognise the cause of a specific error and

determine how to correct it

• effectively use a variety of appropriate error

correction techniques to locate the cause of a
logic error and then correct it

• produce user documentation (incorporating

screen dumps) that includes:
– a user manual
– a tutorial
– online help

Software Design and Development Stage 6 Syllabus

47

Students learn about: Students learn to:

– technical documentation, including:
- systems documentation
- algorithms
- source code

• use of application software including CASE tools to
assist in the documentation process

• recognition of relevant social and ethical issues

Hardware environment to enable implementation of
the software solution
• hardware requirements

– minimum configuration
– possible additional hardware
– appropriate device drivers or extensions

Emerging technologies
• the effect of emerging hardware and software

technologies on the development process (see
Course Specifications document)

• differentiate between types of user
documentation

• identify the personnel who would be likely to

use the different types of documentation

• produce technical documentation for an

implemented software solution

• recognise the need for additional hardware
• identify potential compatibility issues for a

newly developed software solution

• recognise the implications of emerging

technologies for the developer in terms of the
code written to make use of these
technologies

• recognise the implications of emerging
technologies for the code development
process

Software Design and Development Stage 6 Syllabus

48

9.2.4 Testing and evaluating of software solutions

Students should verify their solutions using test data both at program and system level. Live testing
of programs should take place so that potential problems can be identified and addressed. Students
should also check that original requirements are met and that there are no logic errors. All user
interfaces should also be evaluated at this stage.

These steps are critical in ensuring that the developed product meets the user’s needs in terms of
relevance, reliability and quality.

Outcomes

A student:
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions and evaluates

their effectiveness
H5.1 applies project management techniques to maximise the productivity of the software

development
H5.2 creates and justifies the need for the various types of documentation required for a software

solution
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions
H6.1 assesses the skills required in the software development cycle
H6.2 communicates the processes involved in a software solution to an inexperienced user
H6.3 uses and describes a collaborative approach during the software development cycle
H6.4 develops and evaluates effective user interfaces, in consultation with appropriate people.

Software Design and Development Stage 6 Syllabus

49

Students learn about: Students learn to:

Testing the software solution
• comparison of the solution with the design

specifications
• generating relevant test data for complex solutions
• comparison of actual with expected output
• levels of testing

– module
- test that each module and subroutine

functions correctly
- use of drivers

– program
- test that the overall program (including

incorporated modules and subroutines)
functions correctly

– system
- test that the overall system (including all

programs in the suite) functions correctly,
including the interfaces between programs

- acceptance testing
• the use of live test data to ensure that the testing

environment accurately reflects the expected
environment in which the new system will operate
– large file sizes
– mix of transaction types
– response times
– volume of data (load testing)
– effect of the new system on the existing

systems in the environment into which it will
be installed

Reporting on the testing process
• documentation of the test data and output

produced (see Course Specifications document)
– use of CASE tools

• communication with those for whom the solution
has been developed, including:
– test results
– comparison with the original design

specifications

Evaluating the software solution
• verifying the requirements have been met

appropriately
• quality assurance

• differentiate between systems and program test

data

• test their solution with the test data created at

the design stage, comparing actual with
expected output

• use drivers and/or stubs to test specific modules
and subroutines before the rest of the code is
developed

• recognise the importance of module testing
before the module or subroutine is incorporated
into the larger solution

• recognise that while an individual program or
module may have been successfully tested,
when it is incorporated into a larger system,
problems may become apparent

• demonstrate the features of a new system to the

client

• assess the new software solution to ensure that

it meets the specified quality assurance criteria

• assess the performance of the new software

solution against the criteria specified by the
benchmark

Software Design and Development Stage 6 Syllabus

50

Students learn about: Students learn to:

Post implementation review
• facilitation of open discussion and evaluation with

the client
• client sign off process

Software Design and Development Stage 6 Syllabus

51

9.2.5 Maintaining software solutions

Modifications to source code are often required. Often these are not made by the original
developers. Under these circumstances, original documentation is of importance, as is the
readability of the source code. As a minimum, all modified or new code should adhere to the
standards of the original code.

Students should be given opportunities to modify and document their own code and experience
modifying and documenting the code of others. Documentation is an integral part of this process.

Outcomes

A student:
H1.2 differentiates between various methods used to construct software solutions
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions and evaluates

their effectiveness
H5.1 applies project management techniques to maximise the productivity of the software

development
H5.2 creates and justifies the need for the various types of documentation required for a software

solution
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions
H6.1 assesses the skills required in the software development cycle
H6.2 communicates the processes involved in a software solution to an inexperienced user
H6.3 uses and describes a collaborative approach during the software development cycle
H6.4 develops and evaluates effective user interfaces, in consultation with appropriate people

Students learn about: Students learn to:

Modifying code to meet changed requirements
• identifying reasons for change in source code
• locating of sections to be altered
• determining changes to be made
• implementing and testing solution

Documenting changes
• including relevant comments in the source code to

highlight the modification
• updating associated hard copy documentation and

online help
• using CASE tools to monitor changes and versions

(see Course Specifications document)

• read and interpret source code created by other

developers
• design, implement and test modifications
• recognise the cyclical approach to maintenance

• document modifications with dates and

reasons for change

Software Design and Development Stage 6 Syllabus

52

9.3 Developing a Solution Package
Project work in the HSC course is intended to reinforce the content covered in the other topics in
the course. Students need to experience working collaboratively with their peers and others, as this
is common in the computing field beyond school. In order to be able to develop software
successfully, students need to be able communicate well with others. Project work gives students
these opportunities.

The development of project(s) will build students’ understanding of the content dealt with
elsewhere in the course and should be integrated throughout the duration of this course.

Outcomes

A student:
H1.1 explains the interrelationship between hardware and software
H1.2 differentiates between various methods used to construct software solutions
H1.3 describes how the major components of a computer system store and manipulate data
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions and evaluates

their effectiveness
H5.1 applies project management techniques to maximise the productivity of the software

development
H5.2 creates and justifies the need for the various types of documentation required for a software

solution
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions
H6.1 assesses the skills required in the software development cycle
H6.2 communicates the processes involved in a software solution to an inexperienced user
H6.3 uses and describes a collaborative approach during the software development cycle
H6.4 develops and evaluates effective user interfaces, in consultation with appropriate people

Software Design and Development Stage 6 Syllabus

53

Students learn about: Students learn to:

Designing and developing a software solution to a
complex problem

• defining and understanding the problem
– identification of the problem
– generation of ideas
– communication with others involved in the

proposed system
– draft interface design
– representing the system using diagrams
– selection of appropriate data structures
– applying project management techniques
– consideration of all social and ethical issues

• planning and designing
– algorithm design
– refined systems modeling, such as:

- IPO diagrams
- context diagrams
- data flow diagrams (DFDs)
- storyboards
- structure charts
- system flowcharts
- data dictionaries

– additional resources
- Gantt charts
- logbooks
- algorithms
- prototypes

– selecting software environment
– identifying appropriate hardware
– selecting appropriate data structures
– defining files

- purpose
- contents
- organisation

– defining records
– defining required validation processes
– identifying relevant standard or common

modules or subroutines
– using software to document design
– identifying appropriate test data
– enabling and incorporating feedback from

users at regular intervals
– considering all social and ethical issues
– communicating with others involved in the

proposed system
– applying project management techniques

• implementing
– converting the solution into code
– systematic removal of errors
– refining the data dictionary
– including standard or common modules or

subroutines
– using software to refine documentation
– creating online help

• define the problem and investigate alternative

approaches to a software solution
• evaluate the ideas for practical implementation

• select an appropriate solution

• produce an initial Gantt chart

• use a logbook to document the progress of their

project (see Course Specifications document)
• document the software solution

• generate a fully documented design for their

project after communication with other
potential users

• use and modify a Gantt chart as appropriate

• implement a fully tested and documented

software solution in a methodical manner

• use project management techniques to ensure

that the software solution is implemented in an
appropriate time frame

Software Design and Development Stage 6 Syllabus

54

Students learn about: Students learn to:

– reporting on the status of the system at regular
intervals

– applying project management techniques
• testing and evaluating

– completing thorough program and system
testing

– completing all user documentation for the
project

• maintaining
– modifying the project to ensure:

- an improved, more elegant solution
- all needs have been met
- the software solution operates under

changed environments or requirements
– updating the software specifications and

documentation to reflect the changes

Whole project issues
• project management techniques
• social and ethical issues
• feedback from users at regular intervals

• ensure that relevant ethical and social issues are
addressed appropriately

• evaluate the project in relation to the original

understanding of the problem
• review and evaluate the quality of the solution

making the necessary changes

• manage the project effectively
• communicate effectively with potential users

Software Design and Development Stage 6 Syllabus

55

9.4 Options
The option topics in this course extend students’ software development experiences in one of two
dimensions.

Option 1 Programming Paradigms broadens students’ understanding of different types of
programming languages by looking at two different types and the reasons for their development.

Option 2 The Interrelationship Between Software and Hardware extends students’ understanding of
software development by investigating the more detailed relationships between hardware and
software and how the hardware is used by the software to allow specified instructions to be
performed.

9.4.1 Option 1 Programming Paradigms

This topic offers students the opportunity to look at different types of programming languages.
Each of these was developed in an attempt to improve programmer productivity. By focusing on
each of the different paradigms, students should gain an insight into how effective each approach
has been, together with an understanding of the specific areas where the use of a particular
paradigm could be particularly appropriate. This understanding will broaden the students’
experience of different paradigms and will also offer them a wider choice from which to select an
appropriate language to solve a specific problem.

Students are expected to implement solutions to a number of small relevant problems using an
appropriate language. A range of problems should be selected. Some problems will require the use
of the logic paradigm, while other problems will require the use of the object oriented paradigm.

Outcomes

A student:
H1.2 differentiates between various methods used to construct software solutions
H2.1 explains the implications of the development of different languages
H2.2 explains the interrelationship between emerging technologies and software development
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions.

Software Design and Development Stage 6 Syllabus

56

Students learn about: Students learn to:

Development of the different paradigms
• limitations of the imperative paradigm

– difficulty with solving certain types of problems
– the need to specify code for every individual

process
– difficulty of coding for variability

• emerging technologies
• simplifying the development and testing of some

larger software projects
• strengths of different paradigms

Logic paradigm
• concepts

– variables
– rules
– facts
– heuristics
– goals
– inference engine
– backward/forward chaining

• language syntax
– variables
– rules
– facts

• appropriate use, such as:
– pattern matching
– AI
– expert systems

Object oriented paradigm
• concepts

– classes
– objects
– attributes
– methods/operations
– variables and control structures
– abstraction
– instantiation
– inheritance
– polymorphism
– encapsulation

• language syntax
– classes
– objects
– attributes
– methods/operations
– variables and control structures

• appropriate use, such as
– computer games
– web-based database applications

• identify the needs that led to the development

of different paradigms
• recognise the issues associated with using an

imperative approach to solve some problems
such as Artificial Intelligence (AI) and
computer gaming

• recognise representative fragments of code

written using the logic paradigm (see Course
Specifications document)

• recognise the use of the logic paradigm
concepts in code

• interpret a fragment of code written using the
logic paradigm, and identify and correct logic
errors

• modify fragments of code written using the
logic paradigm to incorporate changed
requirements

• code and test appropriate solutions in a
language using the logic paradigm

• assess the appropriateness of a software
solution written using the logic paradigm
against a solution written using an imperative
approach

• recognise representative fragments of code

written using the object oriented paradigm
(see Course Specifications document)

• recognise the use of the object oriented
concepts in code

• interpret a fragment of code written using the
object oriented paradigm, and identify and
correct logic errors

• modify fragments of code written using the
object oriented paradigm to incorporate
changed requirements

• code and test appropriate solutions in a
language using the object oriented paradigm

• assess the appropriateness of a software
solution written using the object oriented
paradigm against a solution written using the
imperative approach

Software Design and Development Stage 6 Syllabus

57

Students learn about: Students learn to:

Issues with the selection of an appropriate paradigm
• nature of the problem
• available resources
• efficiency of solution once coded
• programmer productivity

– learning curve (training required)
– use of reusable modules
– speed of code generation
– approach to testing

• describe the strengths of the imperative, logic
and object oriented paradigms

• identify an appropriate paradigm relevant for
a given situation

• evaluate the effectiveness of using a particular
paradigm to solve a simple problem

Software Design and Development Stage 6 Syllabus

58

9.4.2 Option 2 The interrelationship between software and hardware

This topic looks in much more depth at how software uses hardware to achieve the desired
outcomes. In Section 9.2.3 Implementation of Software Solutions students are introduced to how
instructions are processed by the CPU.

In this topic students are shown how data is stored in binary format. Students investigate further
how the basic arithmetic processes and storage of data are performed by electronic circuitry.
Students should recognise that the design of such circuitry follows the same cyclic process as the
design of software – once the problem has been identified, an appropriate solution is designed and
tested. A completed circuit can be modified to meet changing requirements and all solutions should
be documented and subsequently evaluated.

This topic also introduces students to data streams and their use in communication between the
CPU and a range of hardware devices.

Outcomes

A student:
H1.1 explains the interrelationship between hardware and software
H1.3 describes how the major components of a computer system store and manipulate data
H2.2 explains the interrelationship between emerging technologies and software development
H4.1 identifies needs to which software solutions are appropriate
H5.2 creates and justifies the need for the various types of documentation required for a software

solution
H5.3 selects and applies appropriate software to facilitate the design and development of software

solutions.

Students learn about: Students learn to:

Representation of data within the computer
• character representation, namely:

– ASCII
– Unicode

(see Course Specifications document)

• representation of data using different number

systems
– binary
– hexadecimal
– decimal

• effectively use an ASCII table to convert a

character to its equivalent ASCII value and vice
versa

• recognise the relationship between upper and
lower case letters and digits, and their ASCII
representation

• use the Unicode table which represents a larger
character set than is available with ASCII

• convert a binary or hexadecimal representation to
its equivalent character from the ASCII or
Unicode table

• represent a string of binary digits as its

hexadecimal equivalent and vice versa
• convert integers between binary, decimal and

hexadecimal representations

Software Design and Development Stage 6 Syllabus

59

Students learn about: Students learn to:

• integer representation, including:
– sign and modulus
– 1’s complement
– 2’s complement

• floating point/real representation

– very large positive and negative values
– very small positive and negative values
– integer and non-integer values
– limitations

• binary arithmetic, including:

– addition
– subtraction using 2’s complement

representation
– multiplication (shift and add)
– division (shift and subtract)

Electronic circuits to perform standard software
operations
• logic gates, including:

– AND, OR, NOT, NAND,
NOR, XOR

• truth tables
• Boolean algebra

– describing a circuit
– simplifying an existing circuit

• circuit design steps
– identify inputs and outputs
– identify required components
– check solution with a truth table
– evaluate the circuit design

• specialty circuits, including:
– half adder
– full adder
– flip-flops

Programming of hardware devices
• the data stream

– format of the data stream
- header information
- data block
- trailer information

– use of control characters
– use of hardware specifications to describe the

expected format of the data stream

• convert between decimal fractions and the

equivalent IEEE754 single precision floating
point representation

• recognise implications of the limitations of
particular data representations

• perform arithmetic operations in binary

• generate truth tables for a given circuit
• describe the function of a circuit from its truth

table
• design a circuit to solve a given problem
• convert between the Boolean representation of a

circuit and its circuit diagram
• build and test both user-designed and specialty

circuits using integrated circuits or simulation
software

• use a cyclical approach when designing circuits
• modify an existing circuit design to reflect

changed requirements
• describe the function of specialty circuits
• analyse a specialty circuit in order to determine

its output
• explain how a flip-flop can be used in the storage

and shifting of a bit in memory

• interpret a data stream for a device for which

specifications are provided
• modify a stream of data to meet changed

requirements, given the hardware specifications
• generate a data stream to specify particular

operations for a hardware device, for which
specifications are provided such as a printer, to
specify line feed, form feed, font and style
change, and line spacing

Software Design and Development Stage 6 Syllabus

60

Students learn about: Students learn to:

• processing an input data stream from sensors and
other devices
– the structure of the data stream

- the need to recognise and strip control
characters

- the need to identify the data characters
– interpreting the data stream

(see Course Specifications document)
• generating output to an appropriate device

– determining the purpose of the output
– the structure of the data stream

- required header information
- the need for control characters
- specification of data characters
- required trailer information

(see Course Specifications document)

• issues with interpreting data streams

• develop an algorithm to identify and extract data

and/or control characters in order to interpret a
data stream sent from the hardware

• develop an algorithm to generate a data stream to

provide relevant instructions to the hardware

• recognise that a string of binary digits can have

many different meanings
• interpret a string of binary digits, given a number

of different possible specifications

Software Design and Development Stage 6 Syllabus

61

10 Course Requirements
The Software Design and Development Stage 6 Syllabus includes a Preliminary course of 120
hours (indicative time) and an HSC course of 120 hours (indicative time).

There is no prerequisite study for the Preliminary course. Completion of the Preliminary course is a
prerequisite for the HSC course.

It is a mandatory requirement that students spend a minimum of 20% of Preliminary course time
and 25% of HSC course time on practical activities using the computer.

Software Specifications and Methods of Algorithm descriptions
prescribed for Software Design and Development Stage 6
There are Software Specifications and Methods of Algorithm descriptions prescribed for Software
Design and Development Stage 6 Preliminary and HSC courses. These are published in the Board
Bulletin on the Board of Studies website (www.boardofstudies.nsw.edu.au).

Software Design and Development Stage 6 Syllabus

62

11 Post-school Opportunities
The study of Software Design and Development Stage 6 provides students with knowledge,
understanding and skills that form a valuable foundation for a range of courses at university and
other tertiary institutions.

In addition, the study of Software Design and Development Stage 6 assists students to prepare for
employment and full and active participation as citizens. In particular, there are opportunities for
students to gain recognition in vocational education and training. Teachers and students should be
aware of these opportunities.

Recognition of Student Achievement in Vocational Education and
Training (VET)
Wherever appropriate, the skills and knowledge acquired by students in their study of HSC courses
should be recognised by industry and training organisations. Recognition of student achievement
means that students who have satisfactorily completed HSC courses will not be required to repeat
their learning in courses at TAFE NSW or other Registered Training Organisations (RTOs).

Registered Training Organisations, such as TAFE NSW, provide industry training and issue
qualifications within the Australian Qualifications Framework (AQF).

The degree of recognition available to students in each subject is based on the similarity of
outcomes between HSC courses and industry training packages endorsed within the Australian
Qualifications Framework. Training packages are documents that link an industry’s competency
standards to AQF qualifications. More information about industry training packages can be found
on the National Training Information Service (NTIS) website (www.ntis.gov.au).

Recognition by TAFE NSW

TAFE NSW conducts courses in a wide range of industry areas, as outlined each year in the TAFE
NSW Handbook. Under current arrangements, the recognition available to students of Software
Design and Development in relevant courses conducted by TAFE is described in the HSC/TAFE
Credit Transfer Guide. This guide is produced by the Board of Studies and TAFE NSW and is
distributed annually to all schools and colleges. Teachers should refer to this guide and be aware of
the recognition available to their students through the study of Software Design and Development
Stage 6. This information can be found on the TAFE NSW website
(www.tafensw.edu.au/mchoice).

Recognition by other Registered Training Organisations

Students may also negotiate recognition into a training package qualification with another RTO.
Each student will need to provide the RTO with evidence of satisfactory achievement in Software
Design and Development Stage 6 so that the degree of recognition available can be determined.

Software Design and Development Stage 6 Syllabus

63

12 Assessment and Reporting
Advice on appropriate assessment practice in relation to the Software Design and Development
syllabus is contained in Assessment and Reporting in Software Design and Development Stage 6.
That document provides general advice on assessment in Stage 6 as well as the specific
requirements for the Preliminary and HSC courses. The document contains:
• suggested components and weightings for the internal assessment of the Preliminary course
• mandatory components and weightings for the internal assessment of the HSC course
• the HSC examination specifications, which describe the format of the external HSC

examination.

This document and other resources and advice related to assessment in Stage 6 Software Design and
Development are available on the Board’s website at www.boardofstudies.nsw.edu.au/syllabus_hsc

	1 The Higher School Certificate Program of Study
	2 Rationale for Software Design and Development in the Stage 6 Curriculum
	3 Continuum of Learning for Software Design and Development Stage 6 Students
	4 Aim
	5 Objectives
	6 Course Structure
	7 Objectives and Outcomes
	7.1 Table of Objectives and Outcomes
	7.2 Key Competencies

	8 Content: Software Design and Development Stage 6 Preliminary Course
	8.1 Concepts and Issues in the Design and Development of Software
	8.1.1 Social and ethical issues
	8.1.2 Hardware and software
	8.1.3 Software development approaches

	8.2 Introduction to Software Development
	8.2.1 Defining and understanding the problem, and planning and designing software solutions
	8.2.2 Implementing software solutions
	8.2.3 Testing and evaluating software solutions
	8.2.4 Maintaining software solutions

	8.3 Developing Software Solutions

	9 Content: Software Design and Development Stage 6 HSC Course
	9.1 Development and Impact of Software Solutions
	9.1.1 Social and ethical issues
	9.1.2 Application of software development approaches

	9.2 Software Development Cycle
	9.2.1 Defining and understanding the problem
	9.2.2 Planning and designing software solutions
	9.2.3 Implementation of software solution
	9.2.4 Testing and evaluating of software solutions
	9.2.5 Maintaining software solutions

	9.3 Developing a Solution Package
	9.4 Options
	9.4.1 Option 1 Programming Paradigms
	9.4.2 Option 2 The interrelationship between software and hardware

	10 Course Requirements
	11 Post-school Opportunities
	12 Assessment and Reporting

